淮河流域非一致性序列的水文频率计算
Hydrological Frequency Calculation of Non-Stationary Series in the Huaihe River Basin

作者: 林 洁 :武汉大学水资源与水电工程国家重点实验室,武汉; 夏 军 :武汉大学水资源与水电工程国家重点实验室,武汉;水资源安全保障湖北省协同创新中心,武汉;

关键词: 非一致性趋势诊断跳跃诊断水文频率计算Non-Stationary Trend Diagnosis Jumping Diagnosis Hydrological Frequency Calculation

摘要:

气候变化和人类活动对水文循环过程造成了影响,一定程度改变了水文序列的一致性。因此在变化环境下采用非一致性水文序列频率计算方法来描述水文序列更具合理性。本文选取淮河干流大坡岭站和鲁台子站1956~2010年的最大洪峰序列为研究对象,采用多种变异诊断方法对序列进行趋势性诊断和跳跃性诊断。然后,根据变异诊断结果并基于还原途径对序列进行频率计算。结果表明:大坡岭站和鲁台子站的年最大洪峰序列分别于1981和2001年发生跳跃变异,同时大坡岭站的洪峰流量序列在未来条件下存在一定程度的减少,在丰水年、平水年、枯水年的流量减少幅度为2.22%~18.51%、18.51%~19.48%、19.48%~97.27%。中游鲁台子站的洪峰流量序列在未来条件下存在一定程度的增加,在丰水年、平水年、枯水年的流量增加幅度为4.43%~27.76%、27.76%~45.90%、45.90%~473.51%。考虑水文变异的情况,用未来条件下的频率计算结果推算设计值能够为淮河流域的规划设计和水资源管理提供更为科学的基础。

Abstract: The climate changes and human activities have caused great influences on the process of the hydrological cycle and destroyed the consistency of hydrological series. In this condition, doing hydrological frequency calculation based on the analysis method of non-stationary series will be more reasonable. This paper selects the annual maximum flood peak series from 1956-2010 of Da Po Ling and Lu Tai Zi station in Huaihe main stream to analyze. Several methods are used to do trend diagnosis and jumping diagnosis. The result shows that the variation of Da Po Ling and Lu Tai Zi series which belongs to jumping type occurs in 1981 and 2001. In addition, the annual maximum flood peak in Da Po Ling station has decreased under the future condition and the flow reductions in flood season, normal season, dry season are respectively 2.22% - 18.51%, 18.51% - 19.48%, 19.48% - 97.27%; the annual maximum flood peak in Lu Tai Zi station has increased and the flow increases in flood season, normal season, dry season are respectively 4.43% - 27.76%, 27.76% - 45.90%, 45.90% - 473.51%. Considering the hydrological variation and using the results under the future condition to calculate the design value can provide a scientific basis for planning and management of water resources in the Huaihe River basin.

文章引用: 林 洁 , 夏 军 (2014) 淮河流域非一致性序列的水文频率计算。 水资源研究, 3, 198-207. doi: 10.12677/JWRR.2014.33026

参考文献

[1] 温文. IPCC公布第五次气候变化评估报告:超过95%系人为原因[J]. 自然杂志, 2013, 35(5): 325-328. WEN Wen. Fifth Assessment Report (AR5) of IPCC: Over 95% is human cause. Chinese Journal of Nature, 2013, 35(5): 325-328. (in Chinese)

[2] 梁忠民, 胡义明, 王军. 非一致性水文频率分析的研究进展[J]. 水科学进展, 2011, 22(6): 864-869. LIANG Zhong-min, HU Yi-ming and WANG Jun. Advances in hydrological frequency analysis of non-stationary time series. Advances in Water Science, 2011, 22(6): 864-869. (in Chinese)

[3] 韩瑞光, 丁志宏, 冯平. 人类活动对海河流域地表径流量影响的研究[J]. 水利水电技术, 2009, 40(3) : 4-7. HAN Rui-guang, DING Zhi-hong and FENG Ping. Study on influence of human activity on surface runoff in Haihe River basin. Water Resources and Hydropower Engineering, 2009, 40(3): 4-7. (in Chinese)

[4] 谢平, 陈广才, 韩淑敏, 等. 从潮白河年径流频率分布变化看北京市水资源安全问题[J]. 长江流域资源与环境, 2006, 15(6): 713-717. XIE Ping, CHEN Guang-cai, HAN Shu-min, et al. Problems in the security of water resources in the city of Beijing reflected from the Changein annual runoff frequency distribution in ChaoBaiHe basin. Resources and Environment in the Yangtze Basin, 2006, 15(6): 713-717. (in Chinese)

[5] 王国庆, 张建云, 刘九夫, 等. 气候变化和人类活动对河川径流影响的定量分析[J]. 中国水利, 2008, 2: 55-58. WANG Guo-qing, HANG Jian-yun, LIU Jiu-fu, et al. Quantitative assessment for climate change and human activities impact on river runoff. China Water Resources, 2008, 2: 55-58. (in Chinese)

[6] WAYLEN, P., WOO, M. K. Prediction of annual floods generated by mixed processes. Water Resources Research, 1982, 18(4): 1283-1286.

[7] DIEHL, T., POTTER, K. W. Mixed flood distribution in Wisconsin. In: SINGH, V. P., Ed., Hydrologic Frequency Modeling, Netherlands: D. Reidel Publishing Company, 1987: 213-226.

[8] SINGH, K. P., SINCLAIR, R. A. Two-distribution method for flood frequency analysis. Journal of Hydraulics Division, 1972, 98(1): 29-44.

[9] STRUPCZEWSKI, W. G., SINGH, V. P. and FELUCH, W. Non-stationary approach to at-site flood frequency modeling: I: Maximum likelihood estimation. Journal of Hydrology, 2001, 248(1): 123-142.

[10] STRUPCZEWSKI, W. G., KACZMAREK, Z. Non-stationary approach to at-site flood frequency modeling: II: Weighted least squares estimation. Journal of Hydrology, 2001, 248(1): 143-151.

[11] STRUPCZEWSKI, W. G., SINGH, V. P. and MITOSEK, H. T. Nonstationary approach to at-site flood frequency modeling: III: Flood analysis of Polish rivers. Journal of Hydrology, 2001, 248(1): 152-167.

[12] SINGH, V. P., WANG, S. X. and ZHANG, L. Frequency analysis of nonidentically distributed hydrologic flood data. Journal of Hydrology, 2005, 307: 175-195.

[13] 宁远, 钱敏, 王玉太. 淮河流域水利手册[M]. 北京: 科学出版社, 2003. NING Yuan, QIAN Min and WANG Yu-tai. Hydraulic manual of Huaihe basin. Beijing: Science Press, 2003. (in Chinese)

[14] 张永勇, 夏军, 程绪水, 等. 多闸坝流域水文环境效应研究及应用[M]. 北京: 水利水电出版社, 2011. ZHANG Yong-yong, XIA Jun, CHENG Xu-shui, et al. Research and application of the hydrologic-environmental effects of multi-dams. Beijing: China Water & Power Press, 2011. (in Chinese)

[15] 王孝礼, 胡宝清, 夏军. 水文时序趋势与变异点的R/S分析法[J]. 武汉大学学报(工学版), 2002, 35(2): 10-12. WANG Xiao-li, HU Bao-qing and XIA Jun. R/S analysis method of trend and aberrance point on hydrological time series. Journal of Wuhan University of Hydraulic and Electric Engineering, 2002, 35(2): 10-12. (in Chinese)

[16] 丁晶, 邓育仁. 随机水文学[M]. 成都: 成都科技大学出版社, 1988: 64-110. DING Jing, DENG Yu-ren. Stochastic hydrology. Chengdu: Chengdu University of Science and Technology Press, 1988: 64-110. (in Chinese)

[17] 谢平, 陈广才, 雷红富. 水文变异综合诊断系统[J]. 水力发电学报, 2010, 29(1): 85-91. XIE Ping, CHEN Guang-cai and FU Hong-lei. Hydrological alteration diagnosis system. Journal of Hydroelectric Engineering, 2010, 29(1): 85-91. (in Chinese)

[18] 夏军, 穆宏强, 邱训平, 朱小荣. 水文序列的时间变异性分析[J]. 长江职工大学学报, 2001, 18(3): 1-26. XIA Jun, MU Hong-qiang, QIU Xun-ping and ZHU Xiao-rong. Analysis of time variability for hydrological series. Journal of Changjiang Vocational University, 2001, 18(3): 1-26. (in Chinese)

[19] 谢平, 陈广才, 雷红富, 等. 变化环境下地表水资源评价方法[M]. 北京: 科学出版社, 2009: 78-90, 95-99, 173-191. XIE Ping, CHEN Guang-cai, FU Hong-lei, et al. The assessment method of surface water resources of changing environments. Beijing: Science Press, 2009: 78-90, 95-99, 173-191. (in Chinese)

[20] 卢燕宇, 吴必文, 田红, 等. 基于Kriging插值的1961~2005 年淮河流域降水时空演变特征分析[J]. 长江流域资源与环境, 2011, 20(5): 567-573. LU Yan-yu, WU Bi-wen, TIAN Hong, et al. Spatial and temporal variability characteristics of precipitation in Huai River basin during 1961~2005. Resources and Environment in the Yangtze Basin, 2011, 20(5): 567-573. (in Chi-nese)

[21] 高超, 姜彤, 翟建青. 过去(1958-2007)和未来(2011-2060)50年淮河流域气候变化趋势分析[J]. 中国农业气象, 2011, 33(1): 8-17. GAO Chao, JIANG Tong and ZHAI Jian-qing. Analysis and prediction of climate change in the Huaihe River basin. Chinese Journal of Agrometeorology, 2011, 33(1): 8-17. (in Chinese)

分享
Top