身体表情加工的神经机制
Neural Mechanism of Bodily Expression Processing

作者: 范 聪 , 陈顺森 , 张灵聪 :闽南师范大学教育学院,漳州;

关键词: 身体表情情绪加工神经机制注意资源Bodily Expression Emotion Processing Neural Mechanism Attentional Resources

摘要:

近些年来,身体表情加工已成为情绪加工研究中的一个重要领域。为深入了解身体表情加工的内在机制,越来越多的国外研究者使用事件相关电位、功能性磁共振以及脑磁图等技术研究身体表情加工的神经机制,并且发现,情绪与行为是紧密联系的;身体表情在情绪加工过程中存在三个潜在的作用机制;注意资源调节异常和正常被试对身体表情的加工。未来研究可以从面孔表情对身体表情情绪加工的影响,身体表情的情绪效价和情绪唤醒度与注意资源的关系等方面来开展。

Abstract: In recent years, bodily expression perception has become an important field in the research of emotional processing. In order to deeply know of the intrinsic mechanisms of processing bodily expressions, an increasing number of foreign researchers have used event-related potential, magneto encephalography and functional magnetic resonance techniques to investigate the neural mechanisms of processing bodily expressions. They found that emotion and behavior are closely associated, and that three possible mechanisms may explain the roles of bodily expression in emotional processing, and that the processing of bodily expression is modulated by attentional resources in abnormal and normal participants. Future researches can examine the effect of facial expression on processing bodily expression, and the relationship between attentional resources and valence of bodily expressions, as well as the relationship between attentional resources and arousal of bodily expressions.

文章引用: 范 聪 , 陈顺森 , 张灵聪 (2014) 身体表情加工的神经机制。 心理学进展, 4, 506-514. doi: 10.12677/AP.2014.43069

参考文献

[1] Ashwin, C., Baron-Cohen, S., Wheelwright, S., O’Riordan, M., & Bullmore, E. T. (2007). Differential activation of the amygdala and the “social brain” during fearful face processing in Asperger Syndrome. Neuropsychologia, 45, 2-14.

[2] Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1, 21-62.

[3] Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33, 717-746.

[4] Aviezer, H., Hassin, R. R., Bentin, S., & Trope, Y. (2008). Putting facial expressions back in context. In N. Ambady & J. Skowronski (Eds.), First Impressions (pp. 255-286). New York, NY: Guilford Press.

[5] Aviezer, H., Trope, Y., & Todorov, A. (2012). Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science, 338, 1225-1229.

[6] Conty, L., Dezecache, G., Hugueville, L., & Grèzes, J. (2012). Early binding of gaze, gesture, and emotion: Neural time course and correlates. The Journal of Neuroscience, 13, 4531-4539.

[7] Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9, 28-30.

[8] Olofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective picture processing: An integrative review of ERP findings. Biological Psychology, 77, 247-265.

[9] Darwin, C. (1872). The expressions of emotions in man and animals. London, UK: John Marry.

[10] de Gelder, B., Snyder, J., Greve, D., Gerard, G., & Hadjikhani, N. (2004). Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proceedings of the National Academy of Sciences, 47, 16701- 16706.

[11] de Gelder, B. (2006). Towards a biological theory of emotional body language. Biological Theory, 1, 130-132.

[12] de Gelder, B., & Hadjikhani, N. (2006). Non-conscious recognition of emotional body language. Neuroreport, 6, 583-586.

[13] Panksepp, J. (1998). Affective neuroscience: The foundation of human and animal emotions. New York: Oxford University Press.

[14] de Gelder, B. (2009). Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 1535, 3475-3484.

[15] de Gelder, B., Hortensius, R., & Tamietto, M. (2012). Attention and awareness each influence amygdala activity for dynamic bodily expressions—A short review. Frontiers in Integrative Neuroscience, 6, 54.

[16] de Gelder, B., & Van den Stock, J. (2012). Real faces, real emotions: Perceiving facial expressions in naturalistic contexts of voices, bodies and scenes. In A. J. Calder, G. Rhodes, J. V. Haxby, & M. H. Johnson (Eds.), The Handbook of Face Perception. Oxford: Oxford University Press.

[17] Pelphrey, K. A., Morris, J. P., McCarthy, G., & Labar, K. S. (2007). Perception of dynamic changes in facial affect and identity in autism. Social Cognitive and Affective Neuroscience, 2, 140-149.

[18] de Meijer, M. (1989). The contribution of general features of body movement to the attribution of emotions. Journal of Nonverbal Behavior, 13, 247-268.

[19] Pichon, S., de Gelder, B., & Grèzes, J. (2008). Emotional modulation of visual and motor areas by dynamic body expressions of anger. Society for Neuroscience, 3, 199-212.

[20] Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48, 384-392.

[21] Frijda, N. (1988). The laws of emotion. American Psychologist, 43, 349-358.

[22] Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12, 1-19.

[23] Grèzes, J., Pichon, S., & de Gelder, B. (2007). Perceiving fear in dynamic body expressions. Neuroimage, 35, 959-967.

[24] Grèzes, J., Wicker, B., Berthoz, S., & de Gelder, B. (2009). A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia, 8-9, 1816-1825.

[25] Hadjikhani, N., & de Gelder, B. (2003). Seeing fearful body expressions activates the fusiform cortex and amygdala. Current Biology, 24, 2201-2205.

[26] Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2007). Abnormal activation of the social brain during face perception in autism. Human Brain Mapping, 28, 441-449.

[27] Hadjikhani, N., Joseph, R. M., Manoach, D. S., Naik, P., Snyder, N., Dominick, K., et al. (2009). Body expressions of emotion do not trigger fear contagion in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 1, 70-78.

[28] Hall, G. B., West, C. D., & Szatmari, P. (2007). Backward masking: Evidence of reduced subcortical amygdala engagement in autism. Brain and Cognition, 65, 100-106.

[29] Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 1, 59-67.

[30] Pichon, S., de Gelder, B., & Grèzes, J. (2009). Two different faces of threat. Comparing the neural systems for recognizing fear and anger in dynamic body expressions. Neuroimage, 47, 1873-1883.

[31] Izard, C. E. (1971). The face of emotion. New York: Appleton-Century-Crofts.

[32] Pichon, S., de Gelder, B., & Grèzes, J. (2012). Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 2, 274-285.

[33] James, W. (1890). The principles of psychology. New York: Holt.

[34] Kleinhans, N. M., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin, R., Johnson, L. C., & Aylward, E. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131, 1000-1012.

[35] Pierce, K., Haist, F., Sedaghat, F., & Courchesne, E. (2004). The brain response to personally familiar faces in autism: Findings of fusiform activity and beyond. Brain, 127, 2703-2716.

[36] Kret, M., Pichon, S., Grèzes, J., & de Gelder, B. (2011). Similarities and differences in perceiving threat from dynamic faces and bodies. An fMRI study. NeuroImage, 54, 1755-1762.

[37] Russell, J. A., & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76, 805-819.

[38] Luo, W. B., Feng, W. F., He, W. Q., Wang, N. Y., & Luo, Y. J. (2010). Three stages of facial expression processing: ERP study with rapid serial visual presentation. Neuroimage, 49, 1857-1867.

[39] Schultz, R. T. (2005). Developmental deficits in social perception in autism: The role of the amygdala and fusiform face area. International Journal of Developmental Neuroscience, 23, 125-141.

[40] Sprengelmeyer, R., Young, A. W., Schroeder, U., Grossenbacher, P. G., Federlein, J., Büttner, T., & Przuntek, H. (1999). Knowing no fear. Proceedings of the Royal Society B: Biological Sciences, 266, 2451-2456.

[41] Stienen, B. M. C., & de Gelder, B. (2011). Fear detection and visual awareness in perceiving bodily expressions. Emotion, 5, 1182-1189.

[42] Tomkins, S. S. (1995). Exploring affect. In E. V. Demos (Ed.), The Selected Writings of S. S. Tomkins. Cambridge: Cambridge University Press.

[43] Meeren, H. K., de Gelder, B., Ahlfors, S. P., Hämäläinen, M. S., & Hadjikhani, N. (2013). Different cortical dynamics in face and body perception: An MEG study. PLoS One, 9, e71408.

[44] van de Riet, W. A., Grezes, J., & de Gelder, B. (2009). Specific and common brain regions involved in the perception of faces and bodies and the representation of their emotional expressions. Social Neuroscience, 4, 101-120.

[45] Van den Stock, J., Righart, R., & de Gelder, B. (2007). Body expressions influence recognition of emotions in the face and voice. Emotion, 3, 487-494.

[46] Van den Stock, J., Tamietto, M., Sorger, B., Pichon, S., Grèzes, J., & de Gelder, B. (2011). Cortico-subcortical visual, somatosensory and motor activations for perceiving dynamic whole-body emotional expressions with and without V1. Proceedings of the National Academy of Sciences of the United States of America, 39, 16188-16193.

[47] Van Heijnsbergen, C. C. R. J., Meeren, H. K. M., Grèzes, J., & de Gelder, B. (2007). Rapid detection of fear in body expressions, an ERP study. Brain Research, 1186, 233-241.

[48] Wallbott, H. E. (1998). Bodily expression of emotion. European Journal of Social Psychology, 28, 879-896.

[49] Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., et al. (2007). When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science, 317, 1079-1083.

分享
Top