不确定采样数据系统的稳定性分析
Stability Analysis of Uncertain Sampled-Data Systems

作者: 贾 荣 , 高彩霞 :内蒙古大学数学科学学院,呼和浩特;

关键词: 脉冲系统重置设计采样数据系统稳定性Lyapunov函数多面体嵌入Impulsive System Reset Design Sampled-Data System Stability Lyapunov Functions Polytopic Embedding

摘要:

本文主要研究了具反馈控制的线性时不变脉冲系统的稳定性问题。在过去的理论中认为,脉冲是造成系统不稳定的重要因素。在这里,我们将脉冲系统看作特殊的重置系统,继而得到,在适当的脉冲作用下,系统不但能保持原来的稳定性,甚至可以使一个原来不稳定的系统变得稳定。本文以经典的Lyapunov方法为基础,以线性矩阵不等式LMI为表达形式,给出使系统平衡点全局一致指数稳定的充分必要条件。并以此为基础,对不稳定的微分控制系统,给出使系统指数稳定的脉冲重置的设计方法及重置矩阵的形式。文章最后将结果运用到不确定的LTI采样数据系统中,并给出算例。

Abstract: This paper deals with the stability of linear time-invariant impulsive system with feedback control. The pulses, at some time in the past, were the important factor causing system instability. Here, we first regard the impulsive system as a special reset system, then we analyze the stability of sampled-data system, and design reset matrices such that the uncertain sampled-data system is stable. Based on the classical Lyapunov method and linear matrix inequality LMI form, the necessary and sufficient conditions for stability are given. At last, we apply the results to the uncertain LTI sampled-data systems and illustrate a numerical example.

文章引用: 贾 荣 , 高彩霞 (2014) 不确定采样数据系统的稳定性分析。 理论数学, 4, 75-83. doi: 10.12677/PM.2014.43012

参考文献

[1] Lakshmikantham, V., Banov, D.D. and Simeonov, P.P.S. (1989) Theory of impulsive differential equations. World Scientific, Singapore.

[2] Yang, T. (2001) Impulsive control theory. Springer, Berlin.

[3] Unbehauen, I.R. and Cichocki, I.A. (1989) Fundamentals of sampled-data systems. In: MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems, Springer, Berlin, 1-82.

[4] Chen, T., Francis, B. and Hagiwara, T. (1998) Optimal sampled-data control systems. Proceedings of the IEEE, 86, 741-741.

[5] Bamieh, B., Pearson, J.B., Francis, B.A. and Tannenbaum, A. (1991) A lifting technique for linear periodic systems with applications to sampled-data control. Systems & Control Letters, 17, 79-88.

[6] Longo, S., Herrmann, G. and Barber, P. (2010) Stabilisability and detectability in networked control. Control Theory & Applications, IET, 4, 1612-1626.

[7] Liu, K. and Fridman, E. (2012) Wirtingers inequality and lyapunov-based sampled-data stabilization. Automatic, 48, 102-108.

[8] Fridman, E. (2010) A refined input delay approach to sampled-data control. Automatica, 46, 421-427.

[9] Naghshtabrizi, P., Hespanha, J.P. and Teel, A.R. (2008) Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems & Control Letters, 57, 378-385.

[10] Hetel, L., Kruszewski, A., Perruquetti, W. and Richard, J. (2011) Discrete and inter-sample analysis of systems with aperiodic sampling. IEEE Transactions on Automatic Control, 56, 1696-1701.

[11] Molchanov, A.P. and Pyatnitskiy, Y.S. (1989) Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems & Control Letters, 13, 59-64.

[12] de Oliveira, M.C., Bernussou, J. and Geromel, J.C. (1999) A new discrete-time robust stability condition. Systems & Control Letters, 37, 261-265.

[13] Naghshtabrizi, P. and Hespanha, J.P. (2005) Designing an observer-based controller for a network control system. 44th IEEE Conference on Decision and Control, 12-15 December 2005, 848-853.

[14] Fridman, E., Seuret, A. and Richard, J.P. (2004) Robust sampled-data stabilization of linear systems: An input delay approach. Automatica, 40, 1441-1446.

[15] Yue, D., Han, Q.L. and Peng, C. (2004) State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 51, 640-644.

[16] Yue, D., Han, Q.L. and Lam, J. (2005) Network-based robust h control of systems with uncertainty. Automatica, 41, 999-1007.

分享
Top