多变量Laguerre积分随机有限元方法的研究
Study on the Laguerre Integral Multivariate Stochastic Finite Element Method

作者: 周宗和 , 张 昭 :海军驻武汉四三八厂军事代表室,武汉;

关键词: Laguerre积分随机有限元等直叶片Laguerre Integral Stochastic Finite Element Straight Blade

摘要: 本文在已有的单变量Laguerre积分随机有限元方法的基础上,建立基于Laguerre积分的多变量随机有限元公式,提出了多变量Lagurre积分随机有限元方法(LISFEM)。利用ANSYSAPDL语言二次开发功能,将LISFEM嵌入到ANSYS软件当中,生成相应的计算程序模块,并利用ANSYS的后处理程序,实现随机结构的全节点应力和变形的均值和方差的云图显示。最后,以二回路中汽轮机叶片为例,选择不同的Laguerre积分点数目进行计算,并与解析解进行对比研究,计算结果表明该方法计算效率高,并且采用较少的积分点就能获得较高的计算精度,从而检验了该方法的正确性

Abstract:
In the existing single variable Laguerre integral stochastic finite element method, based on Laguerre integral multivariate stochastic finite element formula, the author proposed variable Lagurre in- tegral stochastic finite element method (LISFEM). By using APDL of ANSYS, LISFEM was embedded into ANSYS, and corresponding calculation program module was generated, then using the post- processing program of ANSYS, the mean and variance of the whole node’s stress and deformation was realized by the cloud image displaying. Finally, took the turbine blade of the two loop as an example, chose different Laguerre integral point number and calculated, then compared with the analytical solution, the calculation results showed that the efficiency of calculating was high, and the less integral point could get high accuracy, so as to test the correctness of this method.

文章引用: 周宗和 , 张 昭 (2014) 多变量Laguerre积分随机有限元方法的研究。 电气工程, 2, 18-24. doi: 10.12677/JEE.2014.22003

参考文献

[1] 张旭方, Pandey Mahesh, D., 张义民 (2012) 结构随机响应计算的一种数值方法. 中国科学: 技术科学, 42, 103114.

[2] Shinozuka, M. (1972) Monte Carlo solution of structural dynamics. Computer & Structures, 2, 855-874.

[3] Shinozuka, M. (1972) Digital simulation of random processes its applications. Journal of Sound and Vibration, 25, 111-128.

[4] 安立强, 王璋奇 (2009) 随机约束汽轮机叶片频率的有限元分析. 中国电机工程学报, 29, 95-100.

[5] 薛小锋, 冯蕴雯, 冯元生 (2012) 基于随机有限元法的平面多裂纹结构可靠性研究. 西北工业大学学报, 30, 508513.

[6] 周宗和, 杨自春等 (2011) 基于摄动响应面法的汽轮机转子随机响应特性及灵敏度分析. 汽轮机技术, 53, 41-44.

[7] Nagpal, V.K., et al. (1989) Probabilistic structural analysis to quantify uncertainties associated with trubopump blades. AIAA Journal, 27, 809-813.

[8] Astill, C.J., et al. (1972) Impact loading on structures with random properties. Journal of Structural Mechanics, 1, 6377.

[9] 杨杰, 陈虬 (2004) 一种新型随机有限元法. 力学季刊, 25, 518-522.

[10] Zhou, Z.H. and Yang, Z.C. (2010) Stochastic finite element method based on Laguerre integrate. 2010 International Conference on Information Technology and Industrial Engineering, 1104-1107.

分享
Top