碳钢表面Zn掺杂Fe2O3纳米线的制备及其可见光光电化学性能
Preparation of Zn-Doped Fe2O3Nanowires on Carbon Steels and Their Photoelectrochemical Performance under Visible Light

作者: 马荣伟 , 罗晶晶 , 张 南 , 邵 辰 , 范旭良 , 周小顺 , 牛振江 :先进催化材料教育部重点实验室,固体表面反应化学浙江省重点实验室,浙江师范大学物理化学研究所,金华;

关键词: 碳钢转化膜Zn掺杂Fe2O3纳米线光电化学Carbon Steel Conversion Coating Zinc-Doped Fe2O3 Nanowires Photoelectrochemistry

摘要:
以碳钢在1.5 mol/L草酸 + 5.0 × 104 mol/L草酸锌溶液中浸泡90 min后形成的草酸盐转化膜为前驱体,经空气中350℃热处理2 h,在碳钢表面制备出Zn掺杂的Fe2O3纳米线氧化膜。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光电流测试对氧化膜进行了表征。结果表明:Fe2O3纳米线的直径约100 nm左右。在2.5 mol/L NaOH溶液中,氧化膜在可见光照射和零偏置电压下,显示n型半导体特征的阳极光电流。Zn掺杂的Fe2O3纳米线氧化膜具有良好的光电化学性能。

Abstract:
Films of Zn-doped Fe2O3 Nanowires were prepared on the surface of carbon steel using a method of thermal decomposition of oxalate conversion coatings at 350˚C in air. The coating precursors were obtained by immersing the steels in ethanol solutions of 1.5 mol/L oxalic acid with 5.0 × 10−4 mol/L zinc oxalate for 90 min. The oxide films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and photocurrent measurement. The results indicate the Fe2O3 nanowires with diameter of ~100 nm. In 2.5 mol/L NaOH solution, the oxide films generated anodic photocurrents of n-type semiconductor behavior under visible light irradiation and zero bias. The Zn doped film generated larger photocurrent than the undoped film did.

文章引用: 马荣伟 , 罗晶晶 , 张 南 , 邵 辰 , 范旭良 , 周小顺 , 牛振江 (2014) 碳钢表面Zn掺杂Fe2O3纳米线的制备及其可见光光电化学性能。 纳米技术, 4, 23-30. doi: 10.12677/NAT.2014.42005

参考文献

[1] Vincent, T., Gross, M., Dotan, H. and Rothschild, A. (2012) Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. International Journal of Hydrogen Energy, 37, 8102-8109.

[2] Yuan, L., Cai, R., Jang, J.I., Zhu, W., Wang, C., Wang, Y. and Zhou, G. (2013) Morphological transformation of hematite nanostructures during oxidation of iron. Nanoscale, 5, 7581-7588.

[3] 蔡丽丽, 郭瑞光, 牛林清, 马建青, 唐长斌, 张建锋 (2011) 氧化剂对钢铁表面氟铁酸盐转化膜的影响. 电镀与涂饰, 30, 31-34.

[4] Sekine, I. and Okano, C. (1989) Corrosion behavior of mild steel and ferritic stainless steels in oxalic acid solution. Corrosion, 45, 924-932.

[5] Ashrafi, A., Golozar, M. A. and Mallakpour, S. (2007) EIS investigation of passive film formation on mild steel in oxalic acid solution. Journal of Applied Electrochemistry, 38, 225-229.

[6] Jia, Z., Ren, D., Liang, Y. and Zhu, R. (2011) A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity. Materials Letters, 65, 3116-3119.

[7] Zhu, H., Gu, X., Zuo, D., Wang, Z., Wang, N. and Yao, K. (2008) Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor. Nanotechnology, 19, 405503.

[8] Wang, M., Ai, Z. and Zhang, L. (2008) Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. The Journal of Physical Chemistry C, 112, 1316313170.

[9] Rao, V., Shashimohan, A.L. and Biswas, A.B. (1974) Studies on the formation of γ-Fe2O3 (maghemite) by thermal decomposition of ferrous oxalate dihydrate. Journal of Materials Science, 9, 430-433.

[10] Boyanov, B., Khadzhiev, D. and Vasilev, V. (1985) Study of thermal decomposition of FeC204•2H20. Thermochimica Acta, 93, 89-92.

[11] 唐万军, 陈栋华 (2007) 二水草酸亚铁热分解反应动力学. 物理化学学报, 4, 605-608.

[12] 焦华, 杨合情 (2009) Fe3O4纳米棒和 Fe2O3纳米线的热氧化制备与表征. 中国科学: B , 1, 39-45.

[13] McShane, C.M. and Choi, K.S. (2009) Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. Journal of the American Chemical Society, 131, 2561-2569.

[14] Hu, X.D., Zhang, H.Q. and Cao, D.M. (2011). Synthesis of Fe3O4 nanocrystals and application in photocatalytic degradation of levofloxacin lactate. Materials Science Forum, 688, 376-382.

[15] Wilhelm, S.M., Yun, K.S., Ballenger, L.W. and Hackerman, N. (1979) Semiconductor properties of iron oxide electrodes. Journal of the Electrochemical Society, 126, 419-424.

[16] Cummings, C.Y., Marken, F., Peter, L.M., hir, A.A. and Wijayantha, K.G. (2012) Kinetics and mechanism of light-driven oxygen evolution at thin film alpha-Fe2O3 electrodes. Chemical Communications (Cambridge, England), 48, 2027-2029.

[17] Sivula, K., Le Formal, F. and Gratzel, M. (2011) Solar water splitting: Progress using hematite α-Fe2O3 photoelectrodes. ChemSusChem, 4, 432-449.

[18] Kay, A., Cesar, I. and Grätzel, M. (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. Journal of the American Chemical Society, 128, 15714-15721.

[19] Murphy, A., Barnes, P., Randeniya, L., Plumb, I., Grey, I., Horne, M. and Glasscock, J. (2006) Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 31, 1999-2017.

[20] Rahman, G. and Joo, O.S. (2013) Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. Journal of Materials Chemistry A, 1, 5554-5561.

[21] Cha, H. G., Song, J., Kim, H.S., Shin, W., Yoon, K.B. and Kang, Y.S. (2011) Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem Commun (Camb), 47, 2441-2443

[22] Kleiman-Shwarsctein, A., Huda, M.N., Walsh, A., Yan, Y., Stucky, G.D., Hu, Y.-S., Al-Jassim, M.M., McFarland, E.W. (2009) Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: Experiment and theory. Chemistry of Materials, 22, 510-517.

[23] Ingler Jr., W.B., Baltrus, J.P. and Khan, S.U. (2004) Photoresponse of p-type zinc-doped iron(III) oxide thin films. Journal of the American Chemical Society, 126, 10238-10239

[24] Kumari, S., Tripathi, C., Singh, A.P., Chauhan, D., Shrivastav, R., Dass, S. and Satsangi, V.R. (2006) Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water. Current Science, 91, 1062-1064.

[25] Kumari, S., Singh, A. P., Tripathi, C., Chauhan, D., Dass, S., Shrivastav, R., Gupta, V., Sreenivas, K. and Satsangi, V.R. (2007) Enhanced photoelectrochemical response of Zn-dotted hematite. International Journal of Photoenergy, 2007, Article ID: 87467.

[26] Nikolic, M., Slankamenac, M., Nikolic, N., Sekulic, D., Aleksic, O., Mitric, M., Ivetic, T., Pavlovic, V. and Nikolic, P. (2012) Study of dielectric behavior and electrical properties of hematite α-Fe2O3 doped with Zn. Science of Sintering, 44, 307-321.

[27] Qi, X., She, G., Wang, M., Mu, L. and Shi, W. (2013) Electrochemical synthesis of p-type Zn-doped alpha-Fe2O3 nanotube arrays for photoelectrochemical water splitting. Chemical Communications (Cambridge, England), 49, 57425744

[28] Wen, X., Wang, S., Ding, Y., Wang, Z.L. and Yang, S. (2004) Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. The Journal of Physical Chemistry B, 109, 215-220.

[29] Grigorescu, S., Lee, C.Y., Lee, K., Albu, S., Paramasivam, I., Demetrescu, I. and Schmuki, P. (2012) Thermal air oxidation of Fe: Rapid hematite nanowire growth and photoelectrochemical water splitting performance. Electrochemistry Communications, 23, 59-62.

[30] Yu, T., Sow, C., Xu, X., Zhu, Y., Lim, C. T. and Thong, J. (2007) Formation of α-Fe2O3 nanoflakes by heating Fe in air. Solid State Phenomena, 121, 45-48.

[31] Satsangi, V.R. (2007) Metal oxide semiconductors in PEC splitting of water. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6650, 9.

分享
Top