多孔分洪闸调度方案优化探讨——以洞庭湖澧南垸为例
Porous Floodgate Control Optimization Study: A Case Study on Linan Poler of Dongting Lake

作者: 李志龙 :湖南师范大学,资源与环境学院,长沙;湖南商学院,旅游管理系,长沙; 毛德华 :湖南师范大学,资源与环境学院,长沙;

关键词: 澧南垸多孔分洪闸分洪闸调度Linan Polder Porous Floodgate Floodgate Control

摘要: 闸门启闭是水闸控制运用的关键。而科学合理的闸门控制调度方案,对于实现最好的分洪效果,保障闸门安全,有着十分重要的意义。以澧水津市站1998年及2003年洪水过程为基础资料,通过同频率控制放大得到设计洪水过程。对现有调度方案进行了评价,结果表明,现有调度方案分洪效果并不理想。根据最大削峰准则与最小成灾历时准则建立了澧南垸洪水闸优化调度目标函数及约束条件。依据所建目标函数,以频率5%的设计洪水过程线为例,制定了洪水闸优化调度方案。对所制定调度方案进行了评价,分析表明,此调度方案能达到较好分洪效果和安全保障

Abstract: Opening and closing is the key of floodgate control and application. Scientific and reasonable control scheme, to achieve the best flood diversion effect and ensure gate security, has very important significance. According to the 1998 and 2003 flood process data of Li river of Jinshi hydrological station, through the same frequency control amplifier, design flood process is obtained. The scheduling scheme is evaluated, and results show that, the existing scheduling scheme of flood diversion effect is not good. Floodgate optimization objective function has been established. On the basis of the objective function, with a frequency of 5% of the designed flood hydrograph for example, a floodgate optimization control scheme has been developed. Analysis shows that the floodgate control scheme can achieve better flood diversion effect and safety.

文章引用: 李志龙 , 毛德华 (2014) 多孔分洪闸调度方案优化探讨——以洞庭湖澧南垸为例。 水资源研究, 3, 166-177. doi: 10.12677/JWRR.2014.32023

参考文献

[1] 梅亚东, 冯尚有. 蓄滞洪区利用与减灾研究[J]. 水科学进展, 1995, 6(2): 145-149.
MEI Yadong, FENG Shangyou. Development and hazard mitigation of flood storage and detention basins. Advances in Water Science, 1995, 6(2): 145-149. (in Chinese)

[2] 侯传河, 沈福新. 我国蓄滞洪区规划与建设的思路[J]. 中国水利, 2010, 20: 40-44.
HOU Chuanhe, SHEN Fuxin. The planning and construction of the detention basin in China. China Water Resources, 2010, 20: 40-44. (in Chinese)

[3] 刘树坤, 沈振明. 利用洪水风险图指导洪泛区及城市建设[J]. 灾害学, 1991, 6(4): 26-31.
LIU Shukun, SHEN Zhenming. Construction of inundating area and city under guide of flood risk map. Journal of Catastrophology, 1991, 6(4): 26-31. (in Chinese)

[4] 毛德华. 基于遗传算法的投影寻踪方法在洞庭湖区洪灾易损性评价中的应用[J]. 冰川冻土, 2010, 32(2): 389-396.
MAO Dehua. Application of projec-tion pursuit method based on genetic algorithm to vulnerability evaluation of flood disasters. Journal of Glaciology and Geocryology, 2010, 32(2): 389-396. (in Chinese)

[5] 孙济良, 秦大庸. 水文频率分析通用模型研究[J]. 水利学报, 1989, 20(4): 1-10.
SUN Jinliang, QIN Dayong. Study on the general model of hydrological frequency analysis. Journal of Hydraulic Engineering, 1989, 20(4): 1-10. (in Chinese)

[6] 陈子全. 基于模拟退火算法的皮尔逊Ⅲ型分布参数估计[J]. 人民黄河, 2012, 34(5): 14-19.
CHEN Ziquan. Pearson type Ⅲ distribution parameters estima-tion based on simulated annealing. Yellow River, 2012, 34(5): 14-19. (in Chinese)

[7] 金光炎. 水文频率分布模型的异同性与参数估计问题[J]. 水科学进展, 2010, 21(4): 466-470.
JIN Guangyan. Similarities and differences of hydrologic frequency distribution models and their parameter estimation problems. Advances in Water Science, 2010, 21(4): 466-470. (in Chinese)

[8] 鲍尔明. 一种设计洪水过程线放大方法的探讨[J]. 水文, 1984, 3: 24-27.
BAO Erming. A debate about design flood hydrograph amplification method. Journal of China Hydrology, 1984, 3: 24-27. (in Chinese)

分享
Top