高压实黄土非饱和土水运动试验模拟研究
Numerical and Experimental Study on the Movement of Unsaturated Soil-Water in High Compacted Loess

作者: 周 奇 :中国人民解放军94857部队58分队,芜湖;南京军区空军勘察设计院,南京; 陈太红 :中国人民解放军94857部队58分队,芜湖; 康俊杰 :空军设计研究局,北京; 岑国平 :空军工程大学工程学院,西安;

关键词: 非饱和土滤纸法水平入渗法竖管法毛细水上升试验数值模拟GeoStudioUnsaturated Soil Filter Paper Method Horizontal Infiltration Method Vertical Tube Method Test on Capillary Water Rise Numerical Simulation GeoStudio

摘要:
对于压实度大于90%的黄土,使用滤纸法研究土壤基质吸力同干密度和含水率之间的关系,使用水平入渗法研究非饱和土水扩散率同干密度和含水率之间的关系,使用竖管法研究土样毛细水上升规律,并使用GeoStudio软件进行数值模拟。试验和模拟结果表明:由于压实程度的不同将改变土壤孔隙的结构特征,对土壤的持水特性有较大的影响,基质吸力和非饱导水率的确定应该同时考虑含水量和密度两种因素;土壤的压实可以有效减缓毛细水的运动速度,压实度为98%95%93%的压实土柱,在105天后毛细上升高度分别为74 cm80 cm94 cmGeostdio软件可以用于土基毛细水上升的模拟。

Abstract:
For loess whose compacted degree is above 90%, the relationship between matric suction and volumetric water content under different compaction conditions is studied by filter paper method, and the relationship between Soil water diffusivity and volumetric water content under different compaction conditions is studied by horizontal infiltration method. The capillary water upward law is studied by vertical tube method, and is simulated by GeoStudio. Results of the experiment and the simulation show that the soil pore structure characteristics is changed due to the different degree of compaction, and influences soil retention ability. Two factors including volumetric water content and density must be considered simultaneously in determining matrix suction and unsaturated soil hydraulic conductivity. With increasing soil compacted degree, the speed of capillarity water movement is decreased. After 105 days, the rising heights of capillary water in soil column are 74 cm, 80 cm and 94 cm in the condition of compacted degree 98%, 95% and 93%, and GeoStudio could be used to simulate capillary water rise.

文章引用: 周 奇 , 陈太红 , 康俊杰 , 岑国平 (2014) 高压实黄土非饱和土水运动试验模拟研究。 土壤科学, 2, 5-16. doi: 10.12677/HJSS.2014.22002

参考文献

[1] Ariza, P. and Birgisson, B. (2002) Evaluation of water flow through pavement systems. MN/RC-2002-30, Minnesota Department of Transportation, Saint Paul.

[2] 刘建华, 郭忠印 (2006) 基于非饱和土理论的公路排水设计方法. 同济人学学报(自然科学版), 2, 191-195.

[3] 雷志栋 (1988) 土壤水动力学. 清华大学出版社, 北京.

[4] 程勤波, 陈喜, 赵玲玲, 等 (2009) 饱和与非饱和带土壤水动力耦合模拟及入渗试验. 河海大学学报: 自然科学版, 3, 284-290.

[5] 沙庆林 (2006) 高速公路沥青路面早期损坏与对策. 长沙理工大学学报(自然科学版), 3, 1-6.

[6] Dawson, A. (2008) Water in road structures. Nottingham Transportation Engineering Centre, Nottingham.

[7] 潘宗俊, 杨晓华, 刘巍然, 杜金, 贾耀辉 (2005) 压实黄土路基导水参数的试验研究. 岩土力学, 7, 52-56.

[8] 谈云志, 孔令伟, 郭爱国, 万智 (2010) 压实红黏土水分传输的毛细效应与数值模拟. 岩土力学, 7, 2289-2295.

[9] 刘小平 (2008) 非饱和路基土作用机理及其迁移特性研究. 博士学位论文, 湖南大学, 长沙.

[10] 李聪 (2007) 基于非饱和土的理论的路基回弹模量研究. 重庆交通大学, 重庆.

[11] Fredland, D.G. and Rahard jo, H. (1997) 非饱和土力学. 中国建筑工业出版社, 北京.

[12] 李锐, 赵文光, 陈善雄 (2006) 基于GEO-SLOPE的膨胀土路基毛细水上升分析. 华中科技大学学报(城市科学版), 23, 36-39.

[13] Van Genuchten, M.Th. (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.

[14] Leij, F.J., Russell, W.B. and Lesch, S.M. (1997) Closed form expressions for water retention and conductivity data. Ground Water, 35, 848-858.

[15] 戚国庆, 黄润秋 (2004) 土水特征曲线的通用数学模型研究. 工程地质学报, 2, 183-187.

[16] 刘巍然 (2004) 压实黄土路基中含水量的分布及水分迁移规律研究. 硕士学位论文, 长安大学, 西安.

[17] 王铁行 (2008) 非饱和黄土路基水分场的数值分析. 岩土工程学报, 1, 42-45.

[18] 付晓莉 (2007) 土壤水分特征曲线测定过程中的压实效应研究. 硕士学位论, 西北林业科技大学, 杨陵.

[19] Miao, L.-C., Jing, F. and Houston, S.L. (2006) Soil-water characteristic curve of remolded expansive soils. In: Proceedings of the Fourth International Conference on Unsaturated Soils, ASCE, Reston, 1671-1682.

[20] 张雪东, 赵成刚, 蔡国庆, 刘艳 (2010) 土体密实状态对土–水特征曲线影响规律研究. 岩土力学, 5, 1463-1469.

[21] 王钊, 杨金鑫, 况娟娟, 等 (2003) 滤纸法在现场基质吸力量测中的应用. 岩土工程学报, 4, 405-408.

[22] 蒋刚, 王钊, 邱金营 (2000) 国产滤纸吸力——含水量关系率定曲线的研究. 岩土力学, 1, 72-75.

[23] 王铁行, 王晓峰 (2003) 密度对砂土基质吸力的影响研究. 岩土力学, 6, 979-982.

[24] 王铁行, 卢靖, 张建峰 (2006) 考虑干密度影响的人工压实非饱和黄土渗透系数的试验研究. 岩土力学与工程学报, 11, 2363-2368.

分享
Top