Electrochemical Properties of Lithium-Rich Li-Cu Alloy Anode Prepared by Electrodeposition for Lithium Batteries

作者: 燕 波 , 崔 莹 , 安茂忠 , 杨培霞 , 张锦秋 , 赵彦彪 :哈尔滨工业大学国家水资源与环境重点实验室,哈尔滨工业大学化工学院,哈尔滨;

关键词: Li-Cu合金Li-Cu/LiFePO4电池SEI膜Li-Cu Alloy Li-Cu/LiFePO4 Cells SEI Layers

从含有LiTFSICu(p-oTs)21-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐和N-甲基吡咯烷酮混合体系中电沉积出了Li-Cu合金。循环伏安测试表明,当LiLi-Cu合金上溶解后,留下的Cu骨架仍然可以保持稳定。Li-Cu/LiFePO4电池的充放电测试表明当以0.2C的倍率充放电20个循环以后,电池的比容量可稳定保持在138.96 mAh/g。电化学阻抗谱和塔菲尔曲线测试表明在经过四个充放电循环后或者在电解液中浸泡三天以后,在Li-Cu合金表面形成了稳定的SEI
Li-Cu alloy was electrodeposited from [EMIm][TFSI] with N-methyl-2-pyrrolidone (NMP) containing mixtures of LiTFSI and Cu(p-oTs)2. The cyclic voltammetry for Li-Cu alloy indicated that the Cu frame could maintain stable when Li dissolved from the Li-Cu alloy. The charge-discharge performances of Li-Cu/LiFePO4 cells showed good stability with the specific capacity of 138.96 mAh/g after 20 cycles at 0.2C. The EIS and Tafel curves proved that stable SEI layers were formed after the fourth charge-discharge cycle or being immersed in the electrolyte for 3 days.

文章引用: 燕 波 , 崔 莹 , 安茂忠 , 杨培霞 , 张锦秋 , 赵彦彪 (2014) Li-Cu合金作为锂电池负极材料的电化学性能。 材料化学前沿, 2, 5-12. doi: 10.12677/AMC.2014.22002


[1] AriA. A. and Lee J. K. (2011) Electrochemical characteristics of lithium metal anodes with diamond like carbon film coating layer. Diamond and Related Materials, 20, 403-408.

[2] Mayers, M.Z., Kaminski, J.W. and Miller, T.F. (2012) Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. Journal of Physical Chemistry C, 116, 26214-26221.

[3] Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X.L., Shao, Y.Y., Engelhard, M.H., Nie, Z.M., Xiao, J., Liu, X.J., Sushko, P.V., Liu, J. and Zhang, J.G. (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society, 135, 4450-4456.

[4] Rao, B.M.L., Francis, R.W. and Christopher, H.A. (1977) Lithium-aluminum electrode. Journal of the Electrochemical Society, 124, 1490-1492.

[5] Scrosati, B. (2011) History of lithium batteries. Journal of Solid State Electrochemistry, 15, 1623-1630.

[6] Ryou, M.H., Lee, D.J., Lee, J.N., Lee, Y.M., Park, J.K. and Choi, J.W. (2012) Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer. Advanced Energy Materials, 2, 645-650.

[7] Zhang, D., Yan, H., Zhang, H., Zhu, Z. and Lu, Q. (2011) Electrochemical properties of The solid polymer electrolyte PEO(20)-LiSO(3)CF(3)-Urea(1.5). Solid State Ionics, 199, 32-36.

[8] Liu, L.L., Li, Z.H., Xia, Q.L., Xiao, Q.Z., Lei, G.T. and Zhou, X.D. (2012) Electrochemical study of P(VDF-HFP)/ PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics, 18, 275-281.

[9] Liu, L., Yang, P.X., Li, L.B., Cui, Y. and An, M.Z. (2012) Application of bis(trifluoromethanesulfonyl)imide li-thiumN-methyl-N-butylpiperidinium-bis(trifluoromethanesulfonyl)imide-poly(vinylidene difluo-ride-co-hexafluoropropylene) ionic liquid gel polymer electrolytes in Li/LiFePO4 batteries at different temperatures. Electrochimica Acta, 85, 49-56.

[10] Ishikawa, M., Machino, S. and Morita, M. (1999) Electrochemical control of a Li metal anode interface: Improvement of Li cyclability by inorganic additives compatible with electrolytes. Journal of Electroanalytical Chemistry, 473, 279-284.

[11] Matsuda, Y., Takemitsu, T., Tanigawa, T. and Fukushima, T. (2001) Effect of organic additives in electrolyte solutions on behavior of lithium metal anode. Journal of Power Sources, 97-98, 589-591.

[12] Besenhard, J.O., Gürtler, J. and Komenda, P. (1987) Corrosion protection of secondary lithium elec-trodes in organic electrolytes. Journal of Power Sources, 20, 253-258.

[13] Besenhard, J.O., Komenda, P., Paxinos, A. and Wudy, E. (1986) Binary and ternary Li-alloys as anode materials in rechargeable organic electrolyte Li-batteries. Solid State Ionics, 18-19, 823-827.

[14] Ding, F., Liu, Y.W. and Hu, X.G. (2006) Characteristics of lithium-gel battery based on a Li-Al alloy anode. Electrochemical and Solid State Letters, 9, A72-A75.

[15] Besenhard, J.O., Fritz, H.P. and Wudy, E. (1985) Cycling of β-LiAl in organic electrolytes-effect of electrode contaminations and electrolyte additives. Journal of Power Sources, 14, 193-200.

[16] Park, C.M., Kim, J.H., Kim, H. and Sohn, H. (2010) Li-alloy based anode materials for Li secondary batteries. Journal of Chemical Society Reviews, 39, 3115-3141.

[17] Weydanz, W.J., Wohlfahrt-Mehrens, M. and Huggins, R.A.A (1999) Room temperature study of the binary lithiumsilicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. Journal of Power Sources, 81-82, 237-242.

[18] Shi, Z., Liu, M.L., Naik, D. and Gole, J.L. (2001) Electrochemical properties of Li-Mg alloy electrodes for lithium batteries. Journal of Power Sources, 92, 70-80.

[19] Yoon, S., Lee, J., Kim, S.O. and Sohn, H.J. (2008) Enhanced cyclability and surface characteristics of lithium batteries by Li-Mg Co-deposition and addition of HF acid in electrolyte. Electrochimica Acta, 53, 2501-2506.

[20] Stark, J.K., Ding, Y. and Kohl, P.A. (2011) Dendrite-free elec-trodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. Journal of the Electrochemical Society, 158, A1100-A1105.

[21] Zhang, D.W., Zhang, S.Q., Jin, Y., Yi, T.H., Xie, S. and Chen, C.H. (2006) Li2SnO3 Derived Secondary Li-Sn Alloy Electrode for Lithium-Ion Batteries. Journal of Alloys and Compounds, 415, 229-233.

[22] Duan, B.C., Wang, W.K., Zhao, H.L., Wang, A.B., Wang, M.J., Yuan, K.G., Yu, Z.B. and Yang, Y.S. (2013) Li-B alloy as anode material for lithium/sulfur battery. ECS Electrochemistry Letters, 2, A47-A51.

[23] Yan, B., Yang, P.X., Zhao, Y.B., Zhang, J.Q. and An, M.Z. (2012) Electrocodeposition of lithium and copper from room temperature ionic liquid 1-ethyl-3-methyllimidazolium bis(trifluoromethylsulfonyl)imid. RSC Advances, 2, 12926-12931.

[24] Lane, G.H., Best, A.S., MacFarlane, D.R., Hollenkamp, A.F. and Forsyth, M. (2010) An azo-spiro mixed ionic liquid electrolyte for lithium metal-LiFePO4 batteries. Journal of the Electrochemical Society, 157, A876-A884.

[25] Peled, E., Golodnitsky, D., Ardel, G. and Eshkenazy, V. (1995) The SEI model-application to li-thium-polymer electrolyte batteries. Electrochimica Acta, 40, 2197-2204