基于Gabor理论的山水画皴法分类
Classification of Landscape Painting Texturing Based on Gabor

作者: 黎宇帆 , 邢鸿雁 , 陈静旋 , 杨敏之 :广东工业大学应用数学学院,广州;

关键词: 皴法分类Gabor滤波器主成分分析支持向量机Texturing Classification Gabor Filter Principal Component Analysis Support Vector Machine

摘要:
提取具有代表性的特征进行纹理描述和分类一直是纹理分析的热点。本文针对不同皴法的国画,运用了一种Gabor滤波器技术进行分类:通过纹理特征提取,利用几何归一化和光线归一化方法将国画图像进行预处理,再对Gabor滤波器组滤波后组成的高维特征矢量通过主成分分析(PCA)进行降维,最后采用支持向量机(SVM)方法进行纹理分类。这种分类方法的准确率可达95.5%

Abstract:
Extracting the effective features for texture description and classification has always been the hot spot of the texture analysis. In this paper, according to different texture of traditional Chinese painting, we use a kind of Gabor filter technique to classify the painting. By texture feature extraction, first of all, we preprocess the traditional Chinese painting images with geometric normalization and light normalization, after that we process the group of the Gabor filter of high dimensional feature vectors by principal component analysis (PCA) for dimension reduction. Finally, support vector machine (SVM) method is employed for texture classification. The accuracy rate of this classification method can reach 95.5%.

文章引用: 黎宇帆 , 邢鸿雁 , 陈静旋 , 杨敏之 (2014) 基于Gabor理论的山水画皴法分类。 计算机科学与应用, 4, 59-65. doi: 10.12677/CSA.2014.43011

参考文献

[1] 朱希安, 曹林, 编著 (2012) 小波分析及其在数字图像处理中的应用. 电子工业出版社, 北京.

[2] 邓洪波, 金连文 (2007) 一种基于局部Gabor滤波器组及PCA + LDA的人脸表情识别方法. 中国图象图形学报, 2, 322-329.

[3] 陈洋, 王润生 (2007) 结合Gabor滤波器和ICA技术的纹理分类方法. 电子学报, 2, 299-303.

[4] Chang, C.C. and Lin, C.J. (2011) LIBSVM: A library for support ectormachines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[5] 林升梁, 刘志 (2007) 基于RBF核函数的支持向量机参数选择. 浙江工业大学学报, 2, 163-167.

[6] 王健峰, 张磊, 陈国兴, 等 (2012) 基于改进的网格搜索法的SVM参数优化. 应用科技, 3, 28-31.

分享
Top