EDTA络合法制备 Ba(Zn1/3Nb2/3)O3纳米粉体及其热学性能
Thermal Properties of Ba(Zn1/3Nb2/3)O3Nanopowders via EDTA-Gel Method

作者: 房丽敏 :广东第二师范学院,广州; 陆正武 :哈尔滨工业大学深圳研究生院,深圳;

关键词: EDTA络合纳米粉体Ba(Zn1/3Nb2/3)O3热学性能EDTA-Gel Nanopowders Ba(Zn1/3Nb2/3)O3 Thermal Properties

摘要:
采用EDTA (乙二胺四乙酸)络合法制备了Ba(Zn1/3Nb2/3)O3 (BZN)纳米粉体,利用X射线衍射仪、傅里叶变换红外光谱以及热重分析仪分析了前驱体的热分解过程和煅烧过程中的相变,同时采用扫描电子显微镜观察了最终粉体形貌。结果表明,650低温煅烧1 h得到钙钛矿相BZN陶瓷纳米粉体,粉体形状接近于球状,平均直径约40 nm,且在微区团聚形成较大的块状聚集体。所制备的粉体在1200烧结2 h得到高致密度(理论密度的98%以上)、单相的BZN陶瓷。

Abstract:
Ba(Zn1/3Nb2/3)O3 (BZN) nanopowders have been prepared via an (Ethylene Diamine Tetraacetic Acid) EDTA-gel method. The decomposition process and the phase transformation during calcination of the precursors are investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetry/Differential thermal analysis (TG/DTA), and the morphology of the resulting powders is observed by Scanning electron microscopy (SEM). The results show that perovskite phase BZN nanopowders with near-spherical shape (average diameter of ~ 40 nm) are obtained after calcining at 650˚C for 1 h. Moreover, the powders agglomerate in micro area, forming into large bulk aggregates. After sintering at 1200˚C for 2 h, the samples show a single BZN phase with a high bulk density (>98%) .

文章引用: 房丽敏 , 陆正武 (2014) EDTA络合法制备 Ba(Zn1/3Nb2/3)O3纳米粉体及其热学性能。 材料科学, 4, 43-49. doi: 10.12677/MS.2014.42008

参考文献

[1] Nomura, S. (1983) Ceramics for Microwave Dielectric Resonator. Ferroelectrics, 49, 61-70.

[2] Varma, M.R. and Sebastian, M.T. (2007) Effect of Dopants on Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 ceramics. Journal of the European Ceramic Society, 27, 2827-2833.

[3] Kim, M.H., Jeong, Y.H., Nahm, S., et al. (2006) Effect of B2O3 and CuO Additives on the Sintering Temperature and Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Ceramics. Journal of the European Ceramic Society, 26, 21392142.

[4] Liou, Y.C., Chen, J.H., Wang, H.W., et al. (2006) Syn-thesis of (BaxSr1-x)(Zn1/3Nb2/3)O3 Ceramics by Reaction-Sintering Process and Microstructure. Materials Research Bulletin, 41, 455-460.

[5] Liang, M.H., Hu, C.T., Chang, H.Y., et al. (1999) Ba(Zn1/3Nb2/3)O3 Ceramics Synthesized by Spray Pyrolysis Technique. Ferroelectrics, 231, 243-248.

[6] 连景宝, 王秉新, 李晓东等 (2010) Gd2O2SO4:Dy3+纳米粉体的共沉淀法合成及光致发光研究. 功能材料, 12, 2091-2097.

[7] 李雅楠, 颉莹莹, 王瑾等 (2011) 溶胶–凝胶法合成纳米Li4Ti5O12负极材料及其电化学性能研究. 功能材料, 12, 2249-2256.

[8] 温强, 马伟民, 王华栋等 (2011) 用EDTA络合法制备BaHfO3:Ce3+纳米粒子. 硅酸盐学报, 6, 903-907.

[9] Li, F., Weng, L.Q., Xu, G.Y., et al. (2005) Synthesis and Characterization of Microwave Dielectric BaTi4O9 Ceramics via EDTA-Citrate Gel Process. Materials Letters, 59, 2973-2976.

[10] Wu, H. and Davies, P.K. (2006) Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: II. Compositional Var-iations in Pure BZN. Journal of the American Ceramic Society, 89, 2250-2263.

[11] Wu, H. and Davies, P.K. (2006) Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: III. Effect of the Muffling Environment. Journal of the American Ceramic Society, 89, 22642270.

[12] 崔洪梅, 刘宏, 王继扬等 (2004) 纳米粉体的团聚与分散. 机械工程材料, 8, 38-41.

[13] Wu, H. and Davies, P.K. (2006) Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: I. Substitution of Ba3W2O9. Journal of the American Ceramic Society, 89, 2239-2249.

[14] Tamura, H., Konoike, T., Sakabe, Y., et al. (1984) Improved High Q Dielectric Resonator with Complex Perovskite Structure. Journal of the American Ceramic Society, 67, c59-c61.

[15] Kawashima, S., Nishida, M., Ueda, I., et al. (1983) Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies. Journal of the American Ceramic Society, 66, 421-423.

[16] Kim, B.K., Hamaguchi, H., Kim, I.T., et al (1995) Probing of 1:2 Ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 Ceramics by XRD and Raman Spectroscopy. Journal of the American Ceramic Society, 78, 3117-3120.

[17] Endo, K., Fujimoto, K. and Murakawa, K. (1987) Dielectric Properties of Ceramics in Ba(Co1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3 Solid Solution. Journal of the American Ceramic Society, 70, C-215-C-218.

[18] Hong, K.S., Kim, I.T. and Kim, C.D. (1996) Order-Disorder Phase Formation in the Complex Perovskite Compounds Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3. Journal of the American Ceramic Society, 79, 3218-3224.

分享
Top