环形DNA分子构象统计
Conformations of DNA Loop

作者: 张兴华 * , 肖弘毅 :北京交通大学理学院,北京;

关键词: DNA环构象蒙特卡洛模拟DNA Loop Conformation Monte Carlo Simulation

摘要:
DNA环的形成和性质是生物物理以及软物质物理关注的基本问题。本文以蠕虫状链为模型,应用蒙特卡洛方法模拟了锚定在蛋白质上的DNA环的构象统计。给出了DNA环在不同长度序列情况下的择优构象状态,讨论了不同构象情况下DNA分子对锚定点的作用力。

Abstract:
The formation and property of DNA loop are the basic problems of biophysics and soft matter physics. In present work, the conformational statistics is studied by Monte Carlo method based on the wormlike chain model. The priority conformational state for the different length of DNA loop is predicted and the force acting on the grafting point is also discussed.

文章引用: 张兴华 , 肖弘毅 (2014) 环形DNA分子构象统计。 应用物理, 4, 11-16. doi: 10.12677/APP.2014.42002

参考文献

[1] Schleif, R. (1992) DNA Looping. Annual Review of Biochemi- stry, 61, 199.

[2] Saiz, L. and Vilar, J. (2006) DNA Looping: The Consequences and Its Control. Current Opinion in Structural Biology, 16, 344- 350.

[3] Saito, N., Takahashi, K. and Yunoki, Y. (1967) The Statistical Mechanical Theory of Stiff Chains. Journal of the Physical So- ciety of Japan, 22, 219-226.

[4] Fredrickson, G.H. (2006) The Equilibrium Theory of Inhomo- geneous Polymers. Oxford University Press, Oxford, 390.

[5] Spakowitz, A.J. and Wang, Z.G. (2005) End-to-End Distance Vector Distribution with Fixed End Orientations for the Worm- like Chain Model, Physical Review E, 72, Article ID: 041802.

[6] Yamakawa, H. and Fujii, M. (1973) Wormlike Chains near the Rod Limit: Path Integral in the WKB Approximation. The Jour- nal of Chemical Physics, 59, 6641.

[7] Spakowitz, A.J. (2006) Wormlike Chain Statistics with Twist and Fixed Ends. EPL, 3, 684.

[8] Kuznetsov, S.V., Benight, A.S. and Ansari, A. (2001) A Semif- lexible Polymer Model Applied to Loop Formation in DNA Hairpins. Biophysical Journal, 81, 2864-2875.

[9] Milner, S.T. (2011) Polymer Crystal-Melt Interfaces and Nuc- leation in Polyethylene. Soft Matter, 7, 2909-2917.

分享
Top