飞秒荧光光谱技术及其在生命科学中的应用
Femtosecond Fluorescence Spectroscopy and Its Applications in Life Science

作者: 陶占东 , 贾梦辉 , 丁晶新 , 张三军 , 潘海峰 , 徐建华 :华东师范大学精密光谱科学与技术国家重点实验室,上海;

关键词: 光学频率上转换时间分辨荧光光谱生物大分子飞秒荧光动力学Optical Frequency Upconversion Time Resolved Fluorescence Spectroscopy Biological Macromolecules Femtosecond Dynamics of Fluorescence

摘要:

频率上转换荧光光谱技术在生物大分子的结构、功能以及动力学研究方面具有广泛的应用。近年来,随着超快激光技术的发展以及相关光电子设备的升级和更新,尤其是飞秒激光的出现,频率上转换技术的时间分辨率达到了飞秒量级,为生物、化学和医学等领域的研究带来了新的发展契机。本文介绍和回顾了频率上转换荧光光谱技术的基本原理,在自行组建的一套频率上转换飞秒荧光光谱实验系统基础上,重点分析了整体系统的关键设计因素。介绍了频率上转换飞秒荧光光谱技术在生命科学领域,尤其是蛋白质、DNA动力学研究中的一些应用。

Abstract: Frequency upconversion fluorescence spectroscopy can be widely used to study biological macromolecules’ structures and dynamics which may be linked to their functions. With the developments of ultrafast laser technology and the updates of related optoelectronic devices, the presence of femtosecond laser especially makes the time resolution of frequency upconversion down to femtosecond, which provides new opportunities to the studies in biology, chemistry and medicine science. In this paper, the basic principle of upconversion technique is briefly reviewed. On the basis of a self-constructed femtosecond upconversion fluorescence spectroscopy experimental system, the key design features of the total system are discussed. Finally, a few applications of the upconversion technique in life science, especially the fluorescence dynamics of proteins and DNA, are demonstrated.

文章引用: 陶占东 , 贾梦辉 , 丁晶新 , 张三军 , 潘海峰 , 徐建华 (2013) 飞秒荧光光谱技术及其在生命科学中的应用。 生物物理学, 1, 33-39. doi: 10.12677/BIPHY.2013.13005

参考文献

[1] Frauenfelder, H., et al. (1991) The energy landscapes and motions of proteins. Science, 254, 1598-1603.

[2] Yang, J., et al. (2012) Femtosecond conical intersection dynamics of tryptophan in proteins and validation of slowdown of hydration layer dynamics. Journal of the American Chemical Society, 134, 16460-16463.

[3] Kao, Y.T., et al. (2012) Ultrafast dynamics of nonequilibrium electron transfer in photoinduced redox cycle: Solvent mediation and conformation flexibility. Journal of Physical Chemistry B, 116, 9130-9140.

[4] Kleemann, H., et al. (2012) Organic pin-diodes approaching ultra-high-frequencies. Organic Electronics, 13, 1114-1120.

[5] Lin, L.L., et al. (2011) Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharmaceutical Research, 28, 2920-2930.

[6] Kawaguchi, H. and Ito, Y. (2012) Numerical analysis of sampling streak camera for higher temporal resolution operation. IEEE Transactions on Magnetics, 48, 411-414.

[7] Smith, R.J. (2010) Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique. Review of Scientific Instruments, 81, Article ID: 10D530.

[8] Mahr, H. and Hirsch, M.D. (1975) Optical up-conversion light gate with picoseconds resolution. Optical Community, 13, 96.

[9] Halliday, L., and Topp, M. (1977). Picosecond luminescence detection using type-2 phasematched frequency-conversion. Chemical Physics Letters, 46, 8.

[10] Kahlow, M.A., Jarzeba, W., Dubruil, T.P. and Barbara, P.F. (1988) Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion. Review of Scientific Instruments, 59, 1098.

[11] Xu, J.H. and Knutson, J.R. (2008) Ultrafast fluorescence spectroscopy via upconversion, applications to biophysics. Fluorescence Spectroscopy, 450, 159-183.

[12] Rosales, T., et al. (2008) Molecular dynamics simulations of perylene and tetracene librations, Comparison with femtosecond upconversion data. Journal of Physical Chemistry A, 112, 55935597.

[13] Shen, Y.R. (2003) The principles of nonlinear optics.

[14] Raffael, K., et al. (2008) Time-dependent photoionization of azulene: Optically induced anistropy on the femtosecond scale. Chemical Physics Letters, 460, 59-63.

[15] Fisz, J.J. (2007) Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy. Journal of Physical Chemistry A, 111, 12867-12870.

[16] Xu, J.H., et al. (2006) Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIA(Glc). Journal of the American Chemical Society, 128, 1214-1221.

[17] Baek, B., et al. (2010) Single-photon detection timing jitter in a visible light photon counter. IEEE Journal of Quantum Electronics, 46, 991-995.

[18] Moon, S. and Kim, D.Y. (2008) Analog single-photon counter for high-speed scanning microscopy. Optics Express, 16, 1399014003.

[19] Wee, K.R., et al. (2010) New technique for measuring carrier mobility using a modified boxcar integrator. Review of Scientific Instruments, 81, Article ID: 096106.

[20] Nikitin, A.V., et al. (1998) The effect of pulse pile-up on threshold crossing rates in a system with a known impulse response. Nuclear Instruments and Methods A, 411, 159-71.

[21] Luchowski, R., et al. (2010) Self-quenching of uranin: Instrument response function for color sensitive pho-to-detectors. Journal of Luminescence, 130, 2446-2451.

[22] Fadeev, V.V., et al. (2009) Raman scattering and fluorescence spectra of water from the sea surface microlayer. Oceanology, 49, 205-210.

[23] Akimoto, S., et al. (2008) Solvent effects on excitation relaxation dynamics of a keto-carotenoid, siphonaxanthin. Photochemical & Photobiological Sciences, 7, 1206-1209.

[24] Peon, J., et al. (2002) Hydration at the surface of the protein Monellin: Dynamics with femtosecond resolution. Proceedings of the National Academy of Sciences of the United States of America, 99, 10964-10969.

[25] Pal, S.K., et al. (2002) Biological water: Femtosecond dynamics of macromolecular hydration. Journal of Physical Chemistry B, 106, 12376-12395.

[26] Stevens, J.A., et al. (2012) Ultrafast dynamics of nonequilibrium resonance energy transfer and probing globular protein flexibility of myoglobin. Journal of Physical Chemistry A, 116, 26102619.

[27] Fiebig, T., et al. (2002) Femtosecond charge transfer dynamics of a modified DNA base: 2-aminopurine in complexes with nucleotides. ChemPhysChem, 3, 781-788.

[28] Beechem, J.M. and Brand, L. (1985) Time-resolved fluorescence of proteins. Annual Review of Biochemistry, 54, 43-71.

[29] Shen, X.H. and Knutson, J.R. (2001) Subpicosecond fluorescence spectra of tryptophan in water. Journal of Physical Chemistry B, 105, 6260-6265.

[30] Lakowicz, J.R. (2006) Principles of fluorescence spectroscopy.

[31] Wojciechowska, A.M. and Sazanov, L.A. (2012) Site-directed mutagenesis of residues involved in proton translocation by Escherichia coli complex I. Biochimica et Biophysica ActaBioenergetics, 1817, S63-S63.

[32] Zhang, L.Y., et al. (2007) Mapping hydration dynamics around a protein surface. Proceedings of the National Academy of Sciences of the United States of America, 104, 18461-18466.

[33] Xu, J., et al. (2009) Femtosecond fluorescence spectra of tryptophan in human gamma-crystallin mutants: Site-dependent ultrafast quenching. Journal of the American Chemical Society, 131, 16751-16757.

[34] Chen, R.F., et al. (1991) Fluorescence of tryptophan dipeptides: Correlations with the rotamer model. Biochemistry, 30, 51845195.

[35] Zhong, D.P., et al. (2012) Reply to Brettel and Byrdin: On the efficiency of DNA repair by photolyase. Proceedings of the National Academy of Sciences of the United States of America, 109, E1463-E1463.

[36] Fiebig, T., et al. (2002) Femtosecond charge transfer dynamics of a modified DNA base: 2-aminopurine in complexes with nucleotides. ChemPhysChem, 3, 781-788.

[37] Trantakis, I.A., et al. (2010) Ultrafast fluorescence dynamics of Sybr Green I/DNA complexes. Chemical Physics Letters, 485, 187-190.

分享
Top