基于模糊控制的管道清淤机器人设计与研制
Design and Development In-Pipe Sewer Robot Based on Fuzzy Logic Control

作者: 孟庆梅 , 沈惠平 , 邓嘉鸣 , 杨 旭 :常州大学机械工程学院, 常州;

关键词: 管道清淤机器人模糊控制模糊神经网络PIDIn-Pipe Sewer Robot Fuzzy Control Fuzzy Neural Network PID

摘要:
管道清淤机器人主要应用于工业上一些不便于人工作业的城市污水系统,它的研究涉及到诸多学科,是机器人研究领域的重要发展方向之一,具有重要的研究价值和广阔的应用前景。本文主要研制一种具有环境自适应轮式管道清淤机器人,机器人主要包括机构本体和控制系统两部分。控制系统由传统的PID控制器和基于模糊神经网络控制器组成,并根据模糊神经网络的特点提出了新参数自适应控制策略。搭建管道试验环境进行机器人的环境适应性试验,证明了本方法的有效性和可行性。本文工作为管道机器人的设计提供了一种方法,为实现机器人的自主作业打下基础。

Abstract:
In-pipe sewer robots are mostly applied in city drain system in the industry where the tasks are not convenient to perform manually. As their study involves many disciplines and is one of the important development directions in the field of robot research, it has important research value and wide application foreground. This paper presents a self-adaptive wheeled drain robot, which composed mechanism and control system. The vehicle control and navigation technique is implemented using a two-mode controller consisting of PID and fuzzy logic control. A new self-adaptive control strategy is presented based on fuzzy neural network. Results of simulations and laboratory experiments are presented to demonstrate the ability of the control strategy. This paper provides a general method for in-pipe robot design and provides mechanism design theory basis for robot’s self-action.

文章引用: 孟庆梅 , 沈惠平 , 邓嘉鸣 , 杨 旭 (2014) 基于模糊控制的管道清淤机器人设计与研制。 机械工程与技术, 3, 18-25. doi: 10.12677/MET.2014.31003

参考文献

[1] 王耀华, 左仁贵 (2010) 国内外微小管道机器人的研究现状. 机械设计, 20, 1-6.

[2] Zhao Y.-X., He, G.-P., Gao, D.-W., et al. (2009) Micro In-Pipe Robot Mechanical Structure Design of Shape Memory Alloy Driving. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, 2009, 360-365.

[3] 邹小兵, 蔡自兴 (2004) 非完整移动机器人道路跟踪控制器设计及应用. 控制与决策, 3, 319-322.

[4] 李士勇 (1998) 模糊控制,神经控制和智能控制论.哈尔滨工业大学出版社, 哈尔滨, 483-494.

[5] Ying, H. (1998) An Analytical Study on Structure, Stability and Design of General Nonlinear Takagi-Sugeno Fuzzy Control System. Automatic, 34, 157-167.

[6] Daldaban, F., Ustkoyuncu, N. and Guny, K. (2006) Phase Inductance Estimation for Switched Reluctance Motor Using Adaptive Neuro-Fuzzy Inference System. Energy Conversion and Management, 47, 485-493.

分享
Top