基于六阶分圆序列的循环码的构造
A Construction of Cyclic Code from Cyclotomic Sequence of Order Six

作者: 牛思皓 , 曹喜望 :南京航空航天大学,理学院数学系,南京; 许广魁 :南京航空航天大学,理学院数学系,南京;淮南师范学院,数学与计算科学系,淮南;

关键词: 循环码分圆序列极小多项式生成多项式Cyclic Codes Cyclotomic Sequences Minimal Polynomial Generator Polynomial

摘要:
循环码是线性码中的一类,在电子产品、数据传输技术、广播系统有着广泛的应用。由于他们有着高效的编码和解码算法,在计算机中也有着广泛的应用。本文中,首先构造了在上周期为素数n的六阶分圆序列,并且给出了序列的线性复杂度和极小多项式。利用此序列的极小多项式作为循环码的生成多项式,构造了上长度为n的循环码。

Abstract:
Cyclic code is a subclass of linear codes and has a lot of applications in consumer electronics, data transmission technologies, broadcast systems, and computer applications as it has efficient encoding and decoding algorithms. In this paper, the cyclotomic sequence of order six is employed to construct a class of cyclic codes over with prime length, and in addition its linear complexity and minima polynomial are determined. The minimal polynomial is served as the generator polynomial of cyclic code and constructs the cyclic codes over with the length of n.

文章引用: 牛思皓 , 许广魁 , 曹喜望 (2014) 基于六阶分圆序列的循环码的构造。 计算机科学与应用, 4, 12-18. doi: 10.12677/CSA.2014.41003

参考文献

[1] Cheng, Q. and Wan, D. (2007) On the list and bounded distance decodability of Reed-Solomon codes. SIAM Journal on Computing, 37, 195-209.

[2] Cheng, Q. and Wan, D. (2010) Complexity of decoding positive rate Reed-Solomon codes. IEEE Transactions on Information Theory, 56, 5217-5222.

[3] Chien, R.T. (1964) Cyclic decoding procedure for the BoseChaudhuri-Hocquenghem codes. IEEE Transactions on Information Theory, 10, 357-363.

[4] Forney, G.D. (1965) On decoding BCH codes. IEEE Transactions on Information Theory, 11, 549-557.

[5] Prange, E. (1958) Some cyclic error-correcting codes with simple decoding algorithms. Air Force Cambridge Research Center-TN-58-156, Cambridge.

[6] Ding, C. (2012) Cyclic codes from the two-prime sequences. IEEE Transactions on Information Theory, 58, 3881-3891.

[7] Sun, Y., Yan, T. and Li, H. (2013) Cyclic codes from the twoprime Whiteman’s generalized cyclotomic sequences with order 4. http://arxiv.org/abs/1303.6378

[8] Ding, C. (2013) A q-polynomial approach to cyclic codes. Finite Fields and Their Applications, 20, 1-14.

[9] Ding, C. (2013) Cyclic codes from cyclotomic sequences of order four. Finite Fields and Their Applications, 23, 8-34.

[10] Storer, T. (1967) Cyclotomy and difference sets. Markham, Chicago.

[11] Delsarte, P. (1975) On subfield subcodes of modified ReedSoloMon codes. IEEE Transactions on Information Theory, 21, 575-576.

[12] Yin, Y. and Cao, X. (2012) The autorrelation values and linear complexity of a class of generalized ternary sequence. Computer Science and Application, 2, 165-171.

分享
Top