LDPC Code’s Girth Calculation Algorithm

作者: 张焕明 , 张 宾 :佛山科学技术学院电子与信息工程系,佛山;

关键词: LDPC码回路 Low-Density Parity-Check Codes Tree Girth

摘要: 1996LDPC(低密度奇偶校验,Low-Density Parity-Check)码是性能限与香农限仅差0.0045 dB的一种差错控制码[1],译码采用SPA(和积算法),但其性能受Tanner图中回路长度和回路数目的影响,回路的存在使译码信息重复迭代,性能下降[2]。本论文通过计算机仿真,采用Matlab元胞数组,将二元校验矩阵转换为树矩阵,实现了求解LDPC码回路的算法。
 Low-Density Parity-Check codes have advantageous performances discovered in 1996 with Shannon limit only 0.0045 dB. Decoding algorithm adopts SPA (Sum-Product Algorithm). However, girths in LDPC codes are detrimental to the code’s performance, and the existence of loops makes the decoding information iterative and the performance reduced. This paper, through computer simulation, using the Matlab cellular array, to convert the binary check matrix to tree matrix, realizes the algorithm of LDPC codes loop.

文章引用: 张焕明 , 张 宾 (2014) LDPC码校验矩阵回路的求解算法。 无线通信, 4, 13-16. doi: 10.12677/HJWC.2014.41003


[1] Gallager, R.G. (1963) Low-density parity check codes. MIT Press, Cambridge.

[2] Mackay, D.J.C. (1999) Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45, 399-431.

[3] Tanner, R.M. (1981) A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 27, 533-547.

[4] Tanner, R.M., Sridhara, D. and Fuja, T. (2001) A class of group-structured LDPC codes. Proceedings of ICSTA, Ambleside, 15-20 July 2001.

[5] Wiberg, N. (1996) Codes and decoding on general graphs, Ph.D. Dissertation, Linkoping Studies in Science and Technology, University of Linkoping.

[6] McGowan, J.A. and Williamson, R.C. (2003) Loop removal from LDPC codes. IEEE Information Theory Workshop, 230233.

[7] Reinhard, D. (1997) Graph theory. Springer-Verlag, New York.