﻿ 利用赫尔默特方差估计法精化三维基准转换参数

# 利用赫尔默特方差估计法精化三维基准转换参数Refining the 3D Coordinate Transformation Parameters with Helmert Variance Estimation Method

According to the inaccuracy existed in weight-determination when original and object coordinates’ acquisition methods are different with WTLS, Helmert Variance Estimation Method is employed to determine two kinds of coordinates’ weight. And then, the specific formula of Helmert Variance Estimation Method which is suitable for 3D coordinate transformation is deduced. The numerical test proved that more reasonable and more precision results can be obtained with our method.

[1] 陈义, 沈云中, 等 (2004) 适用于大旋转角的三维基准转换的一种简便模型. 武汉大学学报(信息科学版), 29, 11011105.

[2] Golub, H.G. and Van Loan, F.C. (1980) An analysis of the total least squares problem. SIAM Journal on Numerical Analysis, 17, 883-893.

[3] 陆珏, 陈义, 等 (2011) 加权总体最小二乘方法在ITRF转换中的应用. 大地测量与地球动力学, 31, 84-86.

[4] 袁庆, 楼立志, 等 (2011) 加权总体最小二乘在三维基准转换中的应用. 测绘学报, 40, 115-118.

[5] 周拥军, 邓才华 (2012) 加权和不加权TLS方法及其在不等精度坐标转换中的应用. 武汉大学学报(信息科学版), 8, 977979.

[6] Yaron, A. and Schaffrin, F.B. (2005) Performing similarity tranformations using the error-in-variables model. ASPRS 2005 Annual Conference Baltinore, Maryland, 7-11 March 2005.

[7] Schaffrin, B., Lee, I., Felus, Y. and Choi, Y. (2006) Total leastsquares for geodetic straight-line and plane adjustment, Boll. Geod. Sci. Aff., 65, 141-168.

[8] 陈义, 陆珏, 等 (2008) 总体最小二乘方法在空间后方交会中的应用. 武汉大学学报(信息科学版), 12, 1271-1274.

[9] 魏木生 (2006) 广义最小二乘问题的理论与计算. 科学出版社, 北京.

[10] 崔希璋, 等 (2009) 广义测量平差(第二版). 武汉大学出版社, 武汉.

Top