360阶单群同构于A6的初等群论证明
An Elementary Proof That a Simple Group of Order 360 Is Isomorphism to A6

作者: 周 峰 , 徐行忠 , 廖 军 , 刘合国 :湖北大学数学系,武汉;

关键词: Sylow定理单群A6ylow’s Theorem Simple Group A6

摘要: 仅用Sylow定理和最基本的置换计算证明了360阶单群一定同构于A6

Abstract: Only by using Sylows theorem and basic permutation computation, we prove that a simple group of order 360 is isomorphic toA6 .

文章引用: 周 峰 , 徐行忠 , 廖 军 , 刘合国 (2014) 360阶单群同构于A6的初等群论证明。 理论数学, 4, 31-37. doi: 10.12677/PM.2014.41006

参考文献

[1] Isaacs, I.M. (2008) Finite group theory. American Mathematical Society, Providence.

[2] Huppert, B. (1967) Endliche gruppen. Springer-Verlag, Berlin-Heidelberg-New York.

[3] Smith, G. and Tabachnikova, O. (2000) Topics in group theory. Springer-Verlag, Berlin-Heidelberg-New York.

[4] 周峰, 徐涛, 刘合国 (2013) 660阶单群同构于PSL(2,11)的初等群论证明. 理论数学, 4, 241-243.

[5] Isaacs, I.M. (1976) Character theory of finite groups. Academic Press, New York.

[6] Rotman, J. (1994) An introduction to the theory of groups. Springer-Verlag, Berlin-Heidelberg-New York.

[7] Cole, F.N. (1893) Simple groups as far as order 660. American Journal of Mathematics, 15, 303-315.

分享
Top