一元四次有理插值样条曲线的应用
Application of a Four Quadratic Rational Interpolation Spline Curve

作者: 符 琳 :安徽理工大学,淮南;

关键词: 曲线保形有效Curve Shape Preserving Effective

摘要:
一元四次有理插值样条对于非封闭曲线进行了很好地数学描述。本文提出了一元四次有理插值样条的方法,探究了这种插值函数的单调性,连续性,误差估计证实其保形性,最后用实际的数值实例来说明该方法的有效性。

Abstract: A four quadratic rational spline interpolation for non closed curves was well described. This paper presents an approach of four quadratic rational interpolation spline and explores the interpolation function monotonicity and continuity. Error estimates confirm the conformality and numerical practical examples illustrate the effectiveness of the method.

文章引用: 符 琳 (2014) 一元四次有理插值样条曲线的应用。 理论数学, 4, 14-20. doi: 10.12677/PM.2014.41003

参考文献

[1] Gregory, J.A. and Delbourgo. R. (1982) Piecewise rational quadratic interpolation to monotonic data. IMA Journal of Numerical Analysis, 2, 123-130.

[2] Delbourgo, R. (1989) Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator. IMA Journal of Numerical Analysis, 9, 123-136.

[3] 王仁宏, 吴顺唐 (1978) 关于有理spline函数. 吉林大学自然科学学报, 1, 58-70.

[4] Duan, Q, Djidjeli, K, Price, W.G. and Twizell, E.H. (1998) A rational cubic spline based on function values. Computers & Graphics, 22, 479-486.

[5] Duan, Q., Wang, L. and Twizell, E.H. (2005) A rational interpolation based on function values and constrained control of the interpolant curves. Applied Mathematics and Computation, 1, 311-322.

[6] Hussain, M.Z. and Hussain, M. (2006) Visualization of data subject to positive constraints. Information and Computing Science, 1, 149-160.

[7] 王强 (2005) 三次保形有理插值. 合肥工业大学学报(自然科学版), 11, 1461-1464.

[8] 方逵 (2010) 一种新的二元有理插值及其性质. 工程图学学报, 4, 117-122.

分享
Top