﻿ 一元四次有理插值样条曲线的应用

# 一元四次有理插值样条曲线的应用Application of a Four Quadratic Rational Interpolation Spline Curve

Abstract: A four quadratic rational spline interpolation for non closed curves was well described. This paper presents an approach of four quadratic rational interpolation spline and explores the interpolation function monotonicity and continuity. Error estimates confirm the conformality and numerical practical examples illustrate the effectiveness of the method.

 Gregory, J.A. and Delbourgo. R. (1982) Piecewise rational quadratic interpolation to monotonic data. IMA Journal of Numerical Analysis, 2, 123-130.

 Delbourgo, R. (1989) Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator. IMA Journal of Numerical Analysis, 9, 123-136.

 王仁宏, 吴顺唐 (1978) 关于有理spline函数. 吉林大学自然科学学报, 1, 58-70.

 Duan, Q, Djidjeli, K, Price, W.G. and Twizell, E.H. (1998) A rational cubic spline based on function values. Computers & Graphics, 22, 479-486.

 Duan, Q., Wang, L. and Twizell, E.H. (2005) A rational interpolation based on function values and constrained control of the interpolant curves. Applied Mathematics and Computation, 1, 311-322.

 Hussain, M.Z. and Hussain, M. (2006) Visualization of data subject to positive constraints. Information and Computing Science, 1, 149-160.

 王强 (2005) 三次保形有理插值. 合肥工业大学学报(自然科学版), 11, 1461-1464.

 方逵 (2010) 一种新的二元有理插值及其性质. 工程图学学报, 4, 117-122.

Top