体层合成的各向异性扩散滤波伪影消除算法
A Tomosynthesis Artifact Removal Algorithm Using Anisotropic Diffusion Filter

作者: 俞龙江 :中山大学,数学与计算科学学院,广州;珠海友通科技有限公司,医疗信息系统部,珠海; 戴道清 :中山大学,数学与计算科学学院,广州; 邹鲁民 :珠海友通科技有限公司,医疗信息系统部,珠海;

关键词: 有限角度重建体层合成投票策略各向异性扩散滤波器 Limited-Angle Reconstruction Tomosynthesis Voting Strategy Anisotropic Diffusion Filter

摘要:

体层合成(tomosynthesis)是一种有限角度图像重建技术,其成像角度范围比CT重建要小得多,这种成像结构产生了切片间的伪影。这种伪影在阅片时会影响对病灶的判断,从而影响诊断的正确率。已提出的投票策略可消除切片间伪影,但该算法依赖于分割算法,或依赖于足够多的投影数目进行估计,且得到的重建结果视觉过渡不自然。本文提出利用各向异性扩散滤波器来消除切片间的伪影,可有效克服投票策略存在的问题,实验验证了本文提出的算法的有效性。

Abstract: Tomosynthesis is a kind of limited-angle reconstruction with its acquisition angle range much less than CT, which leads to out-of-plane artifact. This kind of artifact can influence the decision of disease location during medical image reading, which deviates the accuracy of diagnosis. Voting strategy is proposed to eliminate out-of-plane artifact, but this algorithm depends on specific segmentation algorithm or estimation of sufficient number of project data. In addition, reconstruction result with voting strategy is abrupt to naked eyes. Anisotropic diffusion filter is used to remove out-of-plane artifact in this paper. The proposed algorithm in this paper can overcome the problems of voting strategy. The proposed algorithm is verified by experimental results in this paper.



Abstract:

文章引用: 俞龙江 , 戴道清 , 邹鲁民 (2014) 体层合成的各向异性扩散滤波伪影消除算法。 图像与信号处理, 3, 23-27. doi: 10.12677/JISP.2014.31005

参考文献

[1] 张定华, 黄魁东, 程云勇 (2010) 锥束CT技术及其应用. 西北工业大学出版社, 西安.

[2] Cho, M.K., Kim, H. K., Kim, S.-S., et al. (2007) Development of dental tomosynthesis system. Proceedings of IEEE Nuclear Science Symposium, 3788-3791.

[3] Kalinosky, B., Sabol, J. M., Piacsek, K., et al. (2011) Quantifying the tibiofemoral joint space using x-ray tomosynthesis. Medical Physics, 38, 6672-6682.

[4] Sahiner, B., Chan, H.-P., Hadjiiski, L.M., et al. (2012) Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: A 3D approach. Medical Physics, 39, 28- 39.

[5] Wang, J., Dobbins, J.T. and Li, Q. (2012) Automated lung segmentation in digital chest tomosynthesis. Medical Physics, 39, 732-741.

[6] Brunet-Benkhoucha, M., Verhaegen, F., Lassalle, S., et al. (2009) Clinical implementation of a digital tomosynthesis-based seed reconstruction algorithm for intraoperative postim-plant dose evaluation in low dose rate prostate brachy-therapy. Medical Physics, 36, 5235-5244.

[7] Dobbins, J.T. and Godfrey, D.J. (2003) Digital X-ray tomosynthesis: Current state of the art and clinical potential. Physics in Medicine and Biology, 48, R65-R106.

[8] 曾更生 (2010) 医学图像重建. 高等教育出版社, 北京.

[9] Lauritsch, G. and Haerer, W.H. (1998) A theoretical framework for filtered backprojection in tomosynthesis. SPIE Proceedings, 3338, 1127-1137.

[10] Deller, T., Jabri, K.N., Sabol, J.M., Ni, X., Avinash, G., et al. (2007) Effect of acquisition parameters on image quality in digital tomosynthesis. SPIE Proceedings, 6510, 1-11.

[11] Erhard, K., Grass, M., Hitziger, S., Iske, A. and Nielsen, T. (2012) Generalized filtered backprojection for digital breast tomosynthesis reconstruction. SPIE Proceedings, 8313, 1-7.

[12] Gomi, T., Hirano, H. and Umeda, T. (2009) Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction. Computerized Medical Imaging and Graphics, 33, 267-274.

[13] Wu, T., Moore, R.H. and Kopans, D.B. (2006) Voting strategy for artifact reduction in digital breast tomosynthesis. Medical Physics, 33, 2461-2471.

[14] 冈萨雷斯 (2011) 数字图像处理. 电子工业出版社, 北京.

[15] 王大凯, 侯榆青 (2008) 图像处理的偏微分方程方法. 科学出版社, 北京.

[16] Mendrik, A., Vonken, E., Rutten, A., Viergever, M. and van Ginneken, B. (2009) Noise reduction in computed tomography scans using 3-D anisotropic hybrid diffusion with con-tinuous switch. IEEE Transactions on Medical Imaging, 28, 1585-1594.

分享
Top