气候变化背景下二氧化碳地质封存的盆地级选址评价方法
Assessment Methodology of Basin-Scale Site Selection for CO2 Geological Storage under Background of Climate Change

作者: 刘桂臻 , 李 琦 :岩土力学与工程国家重点实验室,中国科学院武汉岩土力学研究所,武汉;

关键词: CO2地质封存场址筛选评价指标鄂尔多斯盆地模糊综合评价层次分析法 CO2 Geological Storage Site Selection Assessment Criteria Ordos Basin Fuzzy Comprehensive Assessment Analytic Hierarchy Process

摘要:
本文首先回顾了二氧化碳封存的盆地级选址评价方法,重点介绍Bachu提出的一种单级指标评价的盆地级选址评价方法,此方法能够对多个盆地或盆地的不同区域进行评价、排序和筛选。在设计实现快速计算表格的同时,对Bachu方法指标敏感性进行了评估。利用该方法对鄂尔多斯盆地进行评价,评价结果为0.81,表明鄂尔多斯盆地是一个适宜的CO2地质封存场地。对该方法的指标进行敏感性分析表明,地热条件、盆地位置、地质特征和水文地质特征对评价结果的影响最大。同时,利用基于层次分析法的模糊综合评价法对鄂尔多斯盆地进行比较评价,得出其场地等级为良,证明Bachu评价方法在鄂尔多斯盆地是有效的,其结果是合理的,两种方法相互证实了鄂尔多斯盆地作为CO2地质封存场地的可行性。将两种方法进行对比,Bachu的方法操作简单、计算速度快,能够实现多个盆地或盆地的不同区域进行评价、排序和筛选。

Abstract:
An assessment method of basin-scale site selection with a set of 15 criteria is introduced for the screening and ranking of sedimentary basins in terms of their suitability for CO2 geological storage. The application is given for Ordos Basin, and its total score is 0.81, which shows its suitability for CO2 geological storage. According to the sensitivity analysis, criteria, geothermy, location, geology and hydrogeology have the greatest influence on the total score of the basin. An application of AHP (Analytic Hierarchy Process)-fuzzy comprehensive method is also conducted on the assessment of Ordos Basin. Its results prove Bachu’s assessment method, and confirm that Ordos Basin is suitable for CO2 geological storage. Compared to the AHP-fuzzy comprehensive assessment method, the screening and ranking method developed by Bachu is easier to operate, and has a wider application for the assessment, screening and ranking of basins and areas.

文章引用: 刘桂臻 , 李 琦 (2014) 气候变化背景下二氧化碳地质封存的盆地级选址评价方法。 气候变化研究快报, 3, 13-19. doi: 10.12677/CCRL.2014.31003

参考文献

[1] 孙枢 (2006) CO2地下封存的地质学问题及其对减缓气候变化的意义. 中国基础科学, 3, 17-22.

[2] IPCC (2008) Climate change 2007: Synthesis report. In: Core Writing Team, Pachauri, R.K. and Reisinger, A., Eds., Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 104.

[3] CO2CRC (2008) Storage capacity estimation, site selection and characterisation for CO2 storage projects. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra.

[4] Kovscek, A.R. (2002) Screening criteria for CO2 storage in oil reservoirs. Petrolem Science and Technology, 20, 841-866.

[5] Ernest Orlando Lawrence Berkeley Laboratory (2004) GEOSEQ best practices manual-geologic carbon dioxide sequestration: Site evaluation to implementation. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley.

[6] Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S. and Zweigel, P. (2008) Best practice for the storage of CO2 in saline aquifers-observations and guidelines from the SACS and CO2STORE projects. British Geological Survey, Hawthornes, 267.

[7] Grataloup, S., Bonijoly, D., Brosse, E., Dreux, R., Garcia, D., Hasanov, V., Lescanne, M., Renoux, P. and Thoraval, A. (2009) A site selection methodology for CO2 underground storage in deep saline aquifers: Case of the Paris basin. Energy Procedia, 1, 2929-2936.

[8] Bachu, S. (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environmental Geology, 44, 277-289.

[9] Det Norske Veritas (2009) CO2QUALSTORE: Guideline for selection and qualification of sites and projects for geological storage of CO2. Det Norske Veritas, Hovik.

[10] Oldenburg, C.M. (2008) Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk. Environmental Geology, 54, 1687-1694.

[11] Li, Q., Liu, G., Liu, X. and Li, X. (2013) Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project. International Journal of Greenhouse Gas Control, 17, 504-514.

[12] National Energy Technology Laboratory (2010) Best practices for: Site screening, selection, and initial characterization for storage of CO2 in deep geologic formations. National Energy Technology Laboratory, Morgantown.

[13] World Resources Institute (2008) Guidelines for carbon dioxide capture, transport, and storage. WRI, Washington DC.

[14] 郭建强, 张森琦, 刁玉杰, 等 (2011) 深部咸水层CO2地质储存工程场地选址技术方法. 吉林大学学报(地球科学版), 4, 1084-1091.

[15] 李小春, 刘延锋, 白冰, 等 (2006) 中国深部咸水含水层CO2储存优先区域选择. 岩石力学与工程学报, 5, 963-968.

[16] 中国21世纪议程管理中心, 中国地质调查局水文地质环境地质调查中心, 编著 (2012) 中国二氧化碳地质封存选址指南研究. 地质出版社, 北京, 282.

[17] 范基姣, 贾小丰, 张森琦, 等 (2011) CO2地质储存潜力与适宜性评价方法及初步评价. 水文地质工程地质, 6, 108-112.

[18] 张晓普, 于开宁, 李文 (2012) 鄂尔多斯地区深部咸水层二氧化碳地质储存适宜性评价. 地质灾害与环境保护, 1, 73-77.

[19] 杨国强, 苏小四, 杜尚海, 等 (2011) 松辽盆地CO2地质储存适宜性评价. 地球学报, 5, 570-580.

[20] 李小舟, 马瑶, 李红中 (2009) 关于CO2地质封存场址选择的探讨. 2009中国可持续发展论坛论文集, 北京.

[21] 贾玉跃 (2010) 中国北方岩溶塌陷风险评价与岩溶水资源保护对策研究. 硕士论文, 青岛理工大学, 青岛.

[22] 赵青 (2009) 基于AHP-模糊综合评价法的露天矿生态环境质量评价. 硕士论文, 辽宁工程技术大学, 阜新.

分享
Top