可用于气候数据分析的ESMD方法
The ESMD Method for Climate Data Analysis

作者: 王金良 , 李宗军 :青岛理工大学理学院,青岛;

关键词: ESMD方法Hilbert-Huang变换数据分析气候变化时频分析海气通量 ESMD Method Hilbert-Huang Transform Data Analysis Climate Change Time-Frequency Analysis Air-Sea Flux

摘要:
科学网和中国科学报曾先后对我们新研发的ESMD方法进行过报导。ESMD方法是著名的Hilbert-Huang变换的新发展,可用于海洋和大气科学、信息科学等领域所有涉及数据分析的科研和工程应用。ESMD方法在气候数据分析方面有如下优势:1) 优于寻找变化趋势,不仅能够从数年的观测序列中分离出年际变化趋势,也能够从数百年的长时间气候观测序列中分离出气候变化总趋势,有助于探究全球气候变暖问题;2) 优于异常诊断,能够从分解模态中发现异常时段与频段,有利于气候异常研究;3) 优于时频分析和能量变化分析,存在诸多弊端的Hilbert变换被代之以先进的直接插值法,能够直观地分析各时间尺度上的频率变化和总能量变化。由此可见,ESMD方法在气候变化问题的研究中存在很大的应用前景。

Abstract:
The new ESMD method has been reported by the Science Net and the China Science Daily. It is the new development of the well-known Hilbert-Huang transform and can be used effectively in the science researches and engineering applications associated with data analysis from atmospheric and oceanic sciences, informatics and so on. The ESMD method has three superiorities in climate data analysis: 1) it is good at finding the global changing trend. It can not only extract the annual changing trend from the observation sequence of a few years, but also draw out the climate changing trend from that of hundreds of years which is helpful for exploring the problem of global warming; 2) it is good at abnormal diagnosis which is helpful for exploring the problem of climatic anomaly due to the ability of finding the abnormal time and frequency from the decomposed modes; 3) it is good at time-frequency analysis and energy variation analysis. With the abandon of Hilbert transform which has many defects, the data-based direct interpolating approach is developed to compute the total energy and instantaneous frequencies at any time scales. It follows from the above features that the ESMD method has a good application prospect in the research of climate change.

文章引用: 王金良 , 李宗军 (2014) 可用于气候数据分析的ESMD方法。 气候变化研究快报, 3, 1-5. doi: 10.12677/CCRL.2014.31001

参考文献

[1] Wang, J.-L. and Li, Z.-J. (2013) Extreme-point symmetric mode decomposition method for data analysis. Advances in Adaptive Data Analysis, 5, 1350015 (36 pages).

[2] Huang, N.E., Shen, Z., Long, S.R., et al. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A, 454, 903C995.

[3] 王金良, 李宗军 (2012) 关于非线性信号处理的极点对称模态分解方法计算软件(简称ESMD计算软件). 中华人民共和国国家版权局计算机软件著作权登记, No. 2012SR052512.

[4] 王金良, 李慧凤 (2012) 基于极点对称模态分解的频率直接插值法计算软件(简称DI频率计算软件). 中华人民共和国国家版权局计算机软件著作权登记, No. 2012SR102181.

[5] Wang, J.-L. and Li, Z.-J. (2012) What about the asymptotic behavior of the intrinsic mode functions as the sifting times tend to infinity. Advances in Adaptive Data Analysis, 4, 1250008.

[6] Wang, J.-L. and Zhang, G. (2006) Asymptotic weighted periodicity for delay differential equations. Dynamic Systems and Applications, 15, 479-500.

[7] Wang, J.-L. and Li, H.-F. (2007) Asymptotic weightedperiodicity of the impulsive parabolic equation with time delay. Acta Mathematicae Applicatae Sinica, 23, 1-8.

[8] Wu, Z.-H. and Huang, N.E. (2009) Ensemble empirical mode decomposition: A noise assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1-41.

[9] Li, H.-F., Wang, J.-L. and Li, Z.-J. (2013) Application of ESMD method to air-sea flux investigation. International Journal of Geosciences, 4, 8-11.

[10] 王金良 (2008) 关于海气通量的观测及其交换机制的研究. 中国科学院海洋研究所博士后出站报告.

[11] 王金良, 宋金宝 (2009) 关于涡相关海气通量计算的资料处理技术. 海洋科学, 11, 1-5.

[12] Wang, J.-J., Song, J.-B., Huang, Y.-S., et al. (2013) Application of the Hilbert-Huang transform to the estimation of air-sea turbulent fluxes. Boundary-Layer Meteorology, 147, 553-568.

[13] 王金良, 宋金宝 (2011) 晃动平台上海–气通量观测误差矫正模型. 海洋科学, 12, 106-112.

分享
Top