贝叶斯推论统计在心理学研究中的应用
Application of Bayesian Data Analyses in Psychological Research

作者: 沈 序 :清华大学社科学院心理系,北京;

关键词: 贝叶斯数据分析贝叶斯因子假设检验后验概率Bayesian Data Analysis Bayes Factor Hypothesis Testing Posterior Probability

摘要: 近年来贝叶斯统计学越来越受到心理学界的关注。该方法的基本逻辑是综合先验信息和实验结果得出一个后验概率,令研究者可以直接地、客观地检验研究假设,或使用贝叶斯因子比较哪种研究假设能更好解释实验数据。本文总结了这种方法的优势和劣势,举例说明如何在心理学研究中应用它,并介绍了可以使用的软件和教材,以此作为对当前心理学研究中统计方法的一种补充。
 In recent years, the Bayesian Data Analysis method has increasingly received attention from psychological researchers. This method allows them to directly and objectively estimate the probability of a research hypothesis by deriving a posterior probability from the prior distribution and their own research data, or to use the Bayesian factor to directly compare which of two hypotheses can better explain their data. In this literature review paper, we summarized several major strengths of this inference method and its deficiencies. We used examples to illustrate how it can be used in psychological research and summarized some software and textbooks that psychological researchers can use to learn the Bayesian data analysis method. This article aims to introduce a supplementary method into psychological research.

文章引用: 沈 序 (2014) 贝叶斯推论统计在心理学研究中的应用。 心理学进展, 4, 26-32. doi: 10.12677/AP.2014.41006

参考文献

[1] 陈希孺(1998). 数理统计学小史. 数理统计与管理, 2期, 60-64.

[2] 甘怡群等(2005). 心理与行为科学统计. 北京: 北京大学出版社.

[3] 吕佳, 乔克林(2010). 浅谈假设检验中的P值. 科学技术与工程, 10期, 1671-1815.

[4] 仲晓波, 黄希尧, 万荣根(2008). 心理学中对假设检验一些批评的分析. 心理科学, 4期, 1010-1013.

[5] Aronoff, J. (2006). How we recognize angry and happy emotion in people, places, and things. Cross-Cultural Research, 40, 83-105.

[6] Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous retroactive influences on cognition and affect. Journal of Personality and Social Psychology, 100, 407.

[7] Brooks, S. P. (2003). Bayesian computation: A statistical revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361, 2681-2697.

[8] Carlin, B. P., & Louis, T. A. (2008). Bayesian methods for data analysis (Vol. 78). Chapman & Hall/CRC.

[9] Cohen, J. (1994). The earth is round (P-less-than.05). American Psychologist, 49, 997-1003.

[10] Cumming, G., Fidler, F., Leonard, M., Kalinowski, P., Christiansen, A., Kleinig, A., Lo, J., McMenamin, N., & Wilson, S. (2007). Statistical reform in psychology: Is anything changing? Psychological Science, 18, 230-232.

[11] Dixon, P. (2003). The p-value fallacy and how to avoid it. Canadian Journal of Experimental Psychology, 57, 189-202.

[12] Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193242.

[13] Fienberg, S. E. (2006). When did Bayesian inference become “Bayesian”. Bayesian Analysis, 1, 1-40.

[14] Glover, S., & Dixon, P. (2004). Likelihood ratios: A simple and flexible statistic for empirical psychologists. Psychonomic Bulletin & Review, 11, 791-806.

[15] Goodman, S. N. (2005). Introduction to Bayesian methods I: Measuring the strength of evidence. Clinical Trials, 2, 282-290.

[16] Jeffreys, H. (1961). Theory of probability. Oxford: Oxford University Press.

[17] Kahneman, D., Slovic, P., & Tversky, A., Eds. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge University Press.

[18] Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795.

[19] Kruschke, J. (2010). Doing Bayesian data analysis: A tutorial introduction with R and BUGS. Academic Press.

[20] Kruschke, J. K. (2010). Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 658-676.

[21] Larson, C. L., Aronoff, J., & Stearns, J. J. (2007). The shape of threat: Simple geometric forms evoke rapid and sustained capture of attention. Emotion, 7, 526-534.

[22] Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review, 15, 1-15.

[23] Lindley, D. V. (1965). Introduction to probability and statistics from bayesian viewpoint. Part 2 inference. CUP Archive.

[24] Lindley, D. V. (1975). The future of statistics: A Bayesian 21st century. Advances in Applied Probability, 7, 106-115.

[25] Miller, J. (2009). What is the probability of replicating a statistically significant effect? Psychonomic Bulletin & Review, 16, 617-640.

[26] Morey, R. D., Rouder, J. N., & Morey, M. R. D. (2013). Package “Bayes factor”.
ftp://ftp.openefs.org/pub/cran/web/packages/BayesFactor/BayesFactor.pdf

[27] Mr. Bayes, & Price, M. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFRS. Philosophical Transactions, (1683-1775), 370-418.

[28] Myung, I. J., Forster, M., & Browne, M. W. (2000). Special issue on model selection. Journal of Mathematical Psychology, 44, 1-2.

[29] Ntzoufras, I. (2011). Bayesian modeling using WinBUGS (Vol. 698). Wiley.

[30] Press, S. J., & Press, J. S. (1989). Bayesian statistics: Principles, models, and applications. New York: Wiley.

[31] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225-237.

[32] Shen, X., & Wan, X. Visual search for threatening and pleasant shapes.

[33] Smith, A. F., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, Series B (Methodological), 3-23.

[34] Stern, H. (2005). Bayesian statistics for experimental scientists: ANOVA examples.

[35] Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528-540.

[36] Wagenmakers, E. J., Wetzels, R., Borsboom, D., & Van der Maas, H. (2011). Why psychologists must change the way they analyze their data: The case of psi. Journal of Personality and Social Psychology, 100, 426-432.

[37] Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. J. (2011). Statistical evidence in experimental psychology an empir-ical comparison using 855 t tests. Perspectives on Psychological Science, 6, 291-298.

[38] Wetzels, R., & Wagenmakers, E. (2012). A default Bayesian hypothesis test for correlations and partial correlations. Psychonomic Bulletin & Review, 66, 104-111.

分享
Top