基于SWAT模型参数不确定性的黑河流域流量预测
Runoff Prediction Uncertainty of SWAT Caused by Model Parameters over the Upper Reach of Heihe River Basin

作者: 李占玲 :中国地质大学(北京)水资源与环境学院,北京; 李占杰 , 徐宗学 :北京师范大学水科学研究院,北京;

关键词: 不确定性SWAT黑河流量Uncertainty SWAT Heihe River Runoff

摘要: 水文模拟不确定性研究是当今水文科学研究中的热点问题。本文以流域水文模型SWAT为例,以黑河流域作为研究区,基于贝叶斯理论和方法,探讨SWAT模型参数不确定性对流量模拟和预测结果的影响。结果表明,在黑河流域,降水的变化幅度越大,模型参数不确定性对流量模拟和预测的影响越小;在降水变化相同条件下,温度增加会使模型参数不确定性对流量预测值的影响增大;在模型参数不确定性影响下,预测流量的不确定性区间夏季(尤其是67月份)最大;随着降水的减少预测流量值趋于减少,但预测流量值的不确定性区间变化不大;随着气温的升高,春季流量预测值有所增加,且春季流量预测值的不确定性区间也趋于增大;降水增加条件下,随着气温的降低,预测流量过程线越来越尖耸;降水减少条件下,随着气温的降低,预测流量过程线形状变化不大。
 Uncertainty issue in hydrological modeling is a hot topic in recent hydrological research. Taking Heihe river basin as the study area, we mainly focused on the uncertainty in runoff prediction resulted from SWAT model parameter uncertainty. Bayesian method was employed for nine sensitive parameter estimations. We used 95% CI of runoff prediction to illustrate the uncertainty in runoff prediction caused by model parameter uncertainties. Results showed that: the larger the range of changing in precipitation, the narrower the 95% CIs of runoff prediction, the less effects of model parameter uncertainties to runoff prediction. With the increasing of temperature, the 95% CIs of runoff prediction were stretched if the precipitation kept stable, which means that the increases in temperature would lead to larger effects of model parameter uncertainty to runoff prediction. The 95% CIs of summer runoff prediction were the largest, followed by those of autumn and winter runoff predictions. With the decreasing of precipitation, the runoff prediction showed decreasing, while the corresponding 95% CI was little changed. With the increasing of temperature, both the spring runoff prediction and its 95% CI showed increasing.

文章引用: 李占玲 , 李占杰 , 徐宗学 (2013) 基于SWAT模型参数不确定性的黑河流域流量预测。 水资源研究, 2, 358-363. doi: 10.12677/JWRR.2013.26050

参考文献

[1] BEVEN, K., BINLEY, A. The future of distributed models— Model calibration and uncertainty prediction. Hydrological Proc- esses, 1992, 6(3): 279-298.

[2] BATES, B.C., CAMPBELL, E.P. A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resources Research, 2001, 37(4): 937-947.

[3] ENGELAND, K., XU, C.-Y. and GOTTSCHALK, L. Assessing uncertainties in a conceptual water balance model using Bayesian methodology. Hydrological Sciences Journal, 2005, 50(1): 45-63.

[4] MUGUNTHAN, P., SHOEMAKER, C.A. Assessing the impacts of parameter uncertainty for computationally expensive ground- water models. Water Resources Research, 2006, 42(10): W10428.

[5] 王书功. 水文模型参数估计方法及参数估计不确定性研究[D]. 中国科学院研究生院博士学位论文, 中国科学院寒区旱区环境与工程研究所, 兰州, 2006. WANG Shugong. Studies on parameter estimation methods for hydrological model and associated uncertainties. Graduate School of Chinese Academy of Sciences, Ph.D. Thesis, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, 2006.

[6] 刘丽芳, 刘昌明, 王中根等. HIMS模型参数的不确定性及其影响因素[J]. 地理科学进展, 2013, 32(4): 532-537. LIU Lifang, LIU Changming, WANG Zhonggen, et al. Parame- ter uncertainty of HIMS model and its influence factor analysis. Progress in Geography, 2013, 32(4): 532-537. (in Chinese)

[7] 宋晓猛, 孔凡哲, 占车生等. 基于统计理论方法的水文模型参数敏感性分析[J]. 水科学进展, 2012, 23(5): 642-649. SONG Xiaomeng, KONG Fanzhe, ZHAN Chensheng, et al. Sensitivity analysis of hydrological model parameters using a statistical theory approach. Advances in Water Science, 2012, 23(5): 642-649. (in Chinese)

[8] 陈昌军, 郑雄伟, 张卫飞. 三种水文模型不确定性分析方法比较[J]. 水文, 2012, 32(2): 16-20. CHEN Changjun, ZHENG Xiongwei and ZHANG Weifei. Comparison of three methods for uncertainty analysis of hydro- logic models. Hydrology, 2012, 32(2): 16-20. (in Chinese)

[9] 林凯荣, 陈晓宏, 江涛. 基于Beta-PERT分布的水文模型参数不确定性分析[J]. 中山大学学报(自然科学版), 2010, 49(4): 139-143. LIN Kairong, CHEN Xiaohong and JIANG Tao. Parameter un- certainty analysis of hydrological model based on beta-pert dis- tribution. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(4): 139-143. (in Chinese)

[10] 王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1):79-86. WANG Zhonggen, LIU Chengming, HUANG Youbo. The the- ory of SWAT Model and its application in Heihe Basin. Progress in Geography, 2003, 22(1): 79-86. (in Chinese)

[11] 陈仁升, 康尔泗, 张济世. 基于小波变换和GRNN神经网络的黑河出山径流模型[J]. 中国沙漠, 2001, 21(增刊): 12-16. CHEN Rensheng, KANG Ersi and ZHANG Jishi. Runoff model on wavelet conversion and GRNN of Heihe River. Journal of Desert Research, 2001, 21(z1): 12-16. (in Chinese)

[12] 蓝永超, 康尔泗. Kalman滤波方法在黑河出山径流年平均流量预报中的应用[J]. 中国沙漠, 1999, 19(2):156-159. LAN Yongchao, Kang Ersi. Application of Kalman filter method for runoff forecast at the mountain outlet of the Heihe River. Journal of Desert Research, 1999, 19(2): 156-159. (in Chinese)

[13] 朱永华, 仵彦卿. 黑河流域地下水监控研究[J]. 干旱区资源与环境, 2000, 14(3): 60-64. ZHU Yonghua, WU Yanqing. Study on groundwater monitor- ingin Heihe watershed. Journal of Arid Land Resources and En- vironment, 2000, 14(3): 60-64. (in Chinese)

[14] YANG, J., REICHERT, P. and ABBASPOUR, K.C. Bayesian un- certainty analysis in distributed hydrological modelling: A case study in the Thur River basin (Switzerland). Water Resources Research, 2007, 43(10): W10401.

[15] YANG, J., REICHERT, P., ABBASPOUR, K.C. and YANG, H. Hydrological modelling of the Chaohe Basin in China: Statisti- cal model formulation and Bayesian inference. Journal of Hy- drology, 2007, 340(3-4): 67-182.

分享
Top