碳包覆镍纳米微粒的吸波性能研究
Microwave Absorption Properties of Carbon-Coated Nickel Particle

作者: 杨振大 , 张海燕 , 曾国勋 , 徐军军 :广东工业大学材料与能源学院,广州;

关键词: 电弧法碳包覆镍纳米微粒电磁参数吸波性能Arc Method Carbon-Coated Nickel Electromagnetic Parameters Microwave Absorption

摘要:

用直流碳弧法,在氩气氛下烧制碳包覆镍纳米微粒。使用矢量网络分析仪AV3618测得碳包覆镍纳米微粒在1~18 GHz的电磁参数,分析材料电磁性能。结果显示,由于碳包覆镍纳米微粒的碳层与镍核的特殊结构,使得阻抗匹配良好,而测试的磁导率参数表明,碳包覆镍纳米微粒复合材料在5~10 GHz和13 GHz存在损耗峰,这可能是由纳米颗粒表面各向异性,表面能的增加导致的自然共振引起的。模拟测试表明2 mm厚碳包覆镍纳米微粒复合材料在13 Ghz时的微波吸收效果可以达到−30 dB,当厚度增加到3和4 mm厚时,峰值增加到−63 dB,但是对应频段却向低频转移,分别为5.2和8.2 GHz。模拟计算显示,碳包覆镍纳米微粒复合材料具有很好的微波吸收性能,尤其对高频段微波具有更好的吸收性能。

Abstract: The carbon-coated nickel (C@Ni) was prepared by direct current arc method in argon atmosphere. The permittivity and permeability of carbon-coated nickel composite were practically tested in 1 - 18 GHz range using AV3618 machine. The impedance between carbon and nickel matched well as a result of the special structure of C@Ni, while the permeability showed that there were loss peaks within the frequency of 5 - 10 GHz and 13 GHz owning to the natural resonance. The maximum analog reflection losses of 2 mm thickness C@Ni composite layer can reach −30 dB at 13 GHz, while the reflection losses of C@Ni became −63 dB with both 3 mm thickness at 5.2 GHz and 4 mm thickness at 8.2 GHz. There was a good microwave absorption performance of carbon-coated nickel composite through analog computation, especially better microwave absorption performance within high microwave frequency.

文章引用: 杨振大 , 张海燕 , 曾国勋 , 徐军军 (2013) 碳包覆镍纳米微粒的吸波性能研究。 应用物理, 3, 81-86. doi: 10.12677/APP.2013.33016

参考文献

[1] 连文涛, 商红岩, 曹月斌等. 中间相沥青基碳包覆镍纳米颗粒的制备及其催化性能[A]. 第八届全国新型碳材料学术研讨会论文集[C]. 山西: 科学出版社, 2007: 292-296.

[2] 黄涛, 黄英, 贺金瑞等. 吸波材料研究进展[J]. 玻璃钢/混合材料, 2003, 1: 37-40.

[3] S. A. Awadalla. Magnetic study of nickel particles encapsulated carbon nanoparticles. San Jose State University, 1996.

[4] 曾国勋, 张海燕, 葛鹰等. FeCoNi合金超细粉体的制备及其微波性能研究[J]. 表面技术, 2010, 39(3): 1-5.

[5] R. C. Che, L. M. Peng, X. F. Duan, Q. Chen and X. L. Liang. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Advanced Materials, 2004, 16(5): 401-405.

[6] J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto and T. Maeda. Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites. Applied Physics, 2005, 98(5): Article ID: 054305.

[7] L. L. Diandra, D. R. Reuben. Magnetic properties of nanostruc-tured materials. Chemistry of Materials, 1996, 8(8): 1770-1783.

[8] X. L. Dong, Z. D. Zhang, S. R. Jin, W. M. Sun and Y. C. Chuang. Surface characteristic of ultrafine Ni particles. Nanostructured Materials, 1998, 10: 585.

[9] X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei and C. G. Lee. Microwave absorption properties of the carbon-coated nickel nanocapsules. Applied Physics Letters, 2006, 89(5): Article ID: 053115.

[10] S. Ramo, J. R. Whinnery and T. V. Duzer. Fields and waves in communication electronics. New York: Wiley, 1984.

[11] P. C. P. Watts, D. R. Ponnampalam, W. K. Hsu, A. Barnes and B. Chambers. The complex permittivity of multi-walled carbonnanotube-polystyrene composite films in X-band. Chemical Physics Letters, 2003, 378(5-6): 609-614.

[12] X. C. Luo, D. D. L. Chung. Flexible graphite under repeated compression studied by electrical resistance measurements. Carbon, 2001, 39(7): 985-990.

[13] 刘顺华, 刘军民, 董星龙等.

分享
Top