Analysis of Sequence Stratigraphy during Lacustrine Basin Withering Period in the Neocene of Huanghekou Area, Bohai Bay Basin

作者: 滕玉波 :中国地质大学(北京)海洋学院,北京;成都理工大学,成都;中海石油(中国)有限责任公司天津分公司,天津 ; 刘 豪 , 赵春晨 :中国地质大学(北京)海洋学院,北京; 周心怀 :中海石油(中国)有限责任公司天津分公司,天津;

关键词: 渤海湾盆地黄河口地区中新世坳陷湖盆萎缩期层序地层学Huanghekou Area Baohai Bay Basin Miocene Withering Period of a Depressional Lacustrine Basin Sequence Stratigraphy


The Neocene in Huanghekou Area was a withering period and the depressional lacustrine basin was characterized by tectonically stable and slow subsidence; a large-area with shallow water and gentle topography; stable provenance and weak separation and well development of rift and strong fragmentation. Thus it is difficult to identify and subdivide sequences using the traditional well-seismic data combination method. The establishment and subdivision of sequence stratigraphy of the withering period of a continental lacustrine basin was proposed by using the multi-method and technology. Specifically the method is according to the cycle analyses, consulting the identification of unconformity of seismic and drilling well and logging data, considering the drilling well-seismic combination, through the plane network closure of the interpretation results of sequence surface from seismic, drilling well and logging data, and the check of rationality of sequence subdivision to conduct a comprehensive subdivision and establishment of sequence stratigraphy. In the Miocene of the Huanghekou Area, 4 third-order sequences and 8 systems tracts were subdivided. The sequences are obviously developed with inheritance and difference. The “sub-sag” and “valley”, biasing with the Miocene fault, are conducive to the enrichment of sandbodies, which indicates that the macro-distribution of sandbodies in different periods matches well with the faults and that the exploration of shallow systems has a giant potential and prospect.

文章引用: 滕玉波 , 刘 豪 , 周心怀 , 赵春晨 (2013) 渤海湾盆地黄河口地区中新世坳陷湖盆萎缩期层序地层学分析。 地球科学前沿, 3, 308-318. doi: 10.12677/AG.2013.36042


[1] Vail, P.R., Mitchum, R.M. and Thompson, S. (1977) Seismic stratigraphy and global changes of sea level. In: Payton, C.E., Ed., Seismic Stratigraphy—Applications to Hydrocarbon Ex- ploration, AAPG Memoir, 26, 83-97.

[2] Haq, B.U., Hardenbol, J. and Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic: Science, 235, 1153- 1165.

[3] Vail, P.R., Audemard, F., Bowman, S.A., et al. (1991) The strati- graphic signatures of tectonics, eustasy and sedimentology: An overview. Cycles and events in stratigraphy. Berlin: Springer- Verlag, 617-659.

[4] Jervey, M.T. (1988) Quantitative geological modeling of silici- clastic rock sequences and their seismic expression. In: Wilgus, C.K., Hastings, B.S., St. C. Kendall, C.G., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C. Eds., Sea-Level Changes: An Integrated Approach, SEPM Special Publication, 42, 47-69.

[5] Posamentier, H.W. and Allen, G. (1999) Siliciclastic sequence stratigraphy, concepts and applications: SEPM. Concepts in Sedimentology and Paleontology, 7, 210.

[6] Posamentier, H.W. and Morris, W.R. (2000) Aspects of the stratal architecture of forced regressive deposits. In: Hunt, D. and Gawthorpe, R.L., Eds., Sedimentary Responses to Forced Regressions. Special Publication, 172, 19-46.

[7] Van Wagoner, J.C., Mitchum Jr., R.M., Campion, K.M. and Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in well logs, core, and outcrops: Concepts for high-resolution cor- relation of time and facies. American Association of Petroleum Geologists Methods in Exploration Series, 7, 55 p.

[8] Van Wagoner, J.C. (1995) Overview of sequence stratigraphy of foreland basin deposits: Terminology, summary of papers, and glossary of sequence stratigraphy. In: Van Wagoner, J.C. and Bertram, G.T., Eds., Sequence Stratigraphy of Foreland Basin Deposits: Outcrop and Subsurface Examples from the Creta- ceous of North America. Memoir, 64, ix-xxi.

[9] 顾家裕, 郭彬程, 张兴阳 (2005) 中国陆相盆地层序地层格架及模式. 石油勘探与开发, 5, 11-14.

[10] 吴因业 (1997) 陆相盆地层序地层学分析的方法与实践. 石油勘探与开发, 5, 7-10.

[11] 薛良清 (1990) 层序地层学在湖相盆地中的应用探讨. 石油勘探与开发, 6, 29-34.

[12] Lin, C., Kenneth, E., Li, S., Wan, Y., Ren, J. and Zhang, Y. (2001) Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian basin, northeast China. AAPG Bulletin, 85, 2017-2043.

[13] 李思田, 林畅松, 解习农, 杨士恭等 (1995) 大型陆相盆地层序地层学研究——以鄂尔多斯中生代盆地为例. 地学前缘, 3-4, 133-136.

[14] 解习农, 程守田, 陆永潮 (1996) 陆相盆地幕式构造旋回与层序构成. 地球科学: 中国地质大学学报, 1, 27-33.

[15] 王鸿祯, 史晓颖 (1998) 沉积层序及海平面旋回的分类级别——旋回周期的成因讨论. 现代地质, 1, 1-15.

[16] 田立新, 余红忠, 周心怀等 (2009) 黄河口凹陷油气成藏的主控因素. 新疆石油地质, 3, 319-321.

[17] 徐长贵, 姜培海, 武法东, 杨波, 厉大亮 (2002) 渤中坳陷上第三系三角洲的发现、沉积特征及其油气勘探意义. 沉积学报, 4, 588-593.

[18] 代黎明, 李建平, 周心怀, 崔忠国, 程建春 (2007) 渤海海域新近系浅水三角洲沉积体系分析. 岩性油气藏, 4, 75-81.

[19] 朱伟林, 李建平, 周心怀, 郭永华 (2008) 渤海新近系浅水三角洲沉积体系与大型油气田勘探. 沉积学报, 4, 575-582.

[20] 赖维成, 程建春, 周心怀, 李建平, 代黎明, 张云慧 (2009) 湖盆萎缩期准平原沉积层序划分与砂体特征研究——以黄河口地区新近系明下段为例. 中国海上油气, 3, 157-161.

[21] Brooks, A.S. and Zastrow, J.C. (2002) The potential influence of climate change on offshore primary production in Lake Michi- gan. Journal of Great Lakes Research, 28, 597-607.

[22] Polderman, N.J.and Pryor, S.C. (2003) Linking synoptic-scale climate phenomena to lake-level variability in the Lake Michigan- Huron Basin. Journal of Great Lakes Research, 30, 419-434.

[23] Finkelstein, S.A. and Davis, A.M. (2006) Paleoenvironmental records of water level and climatic changes from the middle to late Holocene at a Lake Erie coastal wetland, Ontario, Canada. Quaternary Research, 65, 33-43.

[24] Benson, L.V., Lund, S.P., Burdett, J.W., et al. (1998) Correlation of late-Pleistocene lake-level oscillations in Mono Lake, Cali- fornia, with North Atlantic climate events. Quaternary Research, 49, 1-10.

[25] Olsen, P.E., Kent, D.V., Cornet, B., et al. (1996) High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geological Society of America Bulletin, 108, 40- 77.

[26] Mitchum Jr., R.M., Vail, P.R. and Thompson III, S. (1977) Seis- mic stratigraphy and global changes of sea-level, part 2: The depositional sequence as a basic unit for stratigraphic analysis. In: Payton, C.E., Ed., Seismic Stratigra-phy—Applications to Hy- drocarbon Exploration. Memoir, 26, 53-62.

[27] Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S. and Hardenbol, J. (1988) An over- view of sequence stratigraphy and key definitions. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C., Eds., Sea Level Changes— An Integrated Approach, Special Publication, 42, 39-45.

[28] Embry, A.F. and Johannessen, E.P. (1992) T-R sequence strati- graphy, facies analysis and reservoir distribution in the upper- most Triassic-Lower Jurassic succession, Western Sverdrup Ba- sin, Arctic Canada. In: Vorren, T.O., Bergsager, E., Dahl-Stam- nes, O.A., Holter, E., Johansen, B., Lie, E. and Lund, T.B., Eds., Arctic Geology and Petroleum Potential, Special Publication, 2, 121-146.

[29] Embry, A.F. (1995) Sequence boundaries and sequence hierar- chies: Problems and proposals. In: Steel, R.J., Felt, V.L., Johannessen, E.P. and Mathieu, C., Eds., Sequence Strati-graphy on the Northwest European Margin, Special Publication, 5, 1-11.

[30] Cross, T.A. and Lessenger, M.A. (1998) Sediment volume parti- tioning: Rationale for stratigraphic model evaluation and high- resolution stratigraphic correlation. In: Gradstein, F.M., Sandvik, K.O. and Milton, N.J., Eds., Sequence Stratigraphy—Concepts and Applications, Special Publication, 8, 171-195.

[31] Catuneanu, O., Abreu, V., Bhattacharya, J.P., et al. (2009) To- wards the standardization of sequence stratigraphy. Earth-Sci- ence Reviews, 92, 1-33.