推动富碳农业工业化模式,促进我国农业可持续发展——谈气候变化、粮食安全、能源危机和困难立地四大近代难题的可解决办法
On the Industrialization of High Carbon Agriculture and Its Sustainable Development in China——A Discussion for the Possible Solution of Four Major Global Obstacles: Climate Change, Crop Production, Energy Crisis and Difficult Site

作者: 陈应天 :中国科学院理论物理研究所,北京; 杨名舟 :国家能源局信息中心,北京; 袁东来 :北京林业大学,北京; 张 聪 :北京能源协会、北京应天阳光太阳能技术有限公司,北京; 刘祖平 , 胡 森 :中国科学技术大学,合肥;

关键词: 富碳农业气候变化粮食安全能源危机困难立地碳排放农业工厂光伏光热 太阳光光导纤维LED半埋式车间High Carbon Agriculture Climate Change Crop Production Energy Crisis Difficult Site Carbon Emission Agriculture Factory Solar Electricity and Solar Thermal Solar Optical Fiber LED Underground Workshop with Transparent Rooftop

摘要: 当前,全球大气、水资源、耕地污染情势严峻,气候、粮食、能源安全已成为经济发展的主要制约因素,发展新能源投资大,收效甚微,我国城镇化建设阻力重重。本文提出,工业生产的低碳化和农业生产的富碳化可能是解决目前全球所面临的气候变化、粮食安全和能源危机和困难立地四大近代难题的办法。富碳农业既可利用碳资源节能减排,消纳碳资源,改变日益突出的气候问题,又可以促进相关工业生产,改变一个农业大国生产方式和生活方式,造福人类,是我国现代化新兴农业必由之路。文章通过对几种重要科学技术进展的分析,提出一种依托太阳能光电光热的应用的模式,结合人造光源、气肥、光导纤维、地热等近代技术,使用困难立地大规模地营造封闭式的模拟远古时代的小区域富碳气候,达到超传统的作物的光合作用的高效,在消化大量碳排放的同时,抵抗各种恶劣气候,减少对水源的依赖,增加农业收成,实现农业生产工业化。
The pollution of the air, water and land has seriously threatened our society. Hence, the three global obstacles, i.e., climate change, crop production and energy crisis, have formed the major restrictive factors for the further development of humankind. The authors proposed that the carbon emission which was regarded as waste and a source of pollution can be captured and converted into useful resources for in- creasing the agriculture production. Contrary to the low carbon economy in conventional industry, the proposed high carbon agriculture may provide a way toward the solution of these four major global obstacles. For the enhanced carbon cycle as proposed, we analyzed the scientific progresses of a number of modern technologies. Thus, it is proposed in the article that a high carbon climate environment based on the solar photovoltaic and solar thermal with the combination of the technologies of LED, CO2 fertilizer, optical fiber, geological heat, etc., can be realized in a small geological area to make the high-carbon agriculture possible. The proposal is of a special significance for the urbanization of China as promoted by the Chinese gov- ernment recently.

文章引用: 陈应天 , 杨名舟 , 袁东来 , 张 聪 , 刘祖平 , 胡 森 (2013) 推动富碳农业工业化模式,促进我国农业可持续发展——谈气候变化、粮食安全、能源危机和困难立地四大近代难题的可解决办法。 农业科学, 3, 113-135. doi: 10.12677/HJAS.2013.35022

参考文献

[1] Mandiola, J., et al. (2013) Sperm counts may have declined in young university students in Southern Spain. Andrology, 1, 408- 413.

[2] Rackley, S. (2010) Carbon capture and storage. Elsevier Inc., Amsterdam, 3.

[3] Pearce, F. and Page, M. (2008) Climate change: The next ten years. New Scientist, 199, 26.

[4] Gore, A. (2013) The future. Virgin Books Press.

[5] Wigley, T. and Schimel, D. (2000) The carbon cycle. Cambridge University Press, Cambridge.

[6] Adams, J. (1998) Estimates of total carbon storage in various important reservoirs. Environmental Sciences Division, Oak Ridge National Laboratory, TN37831, USA.

[7] Barrett, P.M. and Willis, K.J. (2001) Did dinosaurs invent flow- ers? Dinosaur-angiosperm coevolution revisited. Cambridge Phi- losophical Society, Oxford.

[8] 许大全 (2002) 光合作用效率. 上海科学技术出版社, 上海.

[9] NOAA Mauna Loa Data (2013) NOAA release date for monthly CO2 data: Atmospheric CO2 Mauna Loa Observatory monthly mean CO2 concentrations since March 1958.

[10] (2007) IPCC fourth assessment report: Climate change.

[11] (2009) Global carbon budget, decadal averages. Calculations by Pro Oxygen on Annual Data Published in Nature Geoscience.

[12] 户苅义次. 薛德榕, 译 (1979) 作物的光合作用与物质生产. 科学出版社, 北京.

[13] Zhu, X. and Long S. (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into bio- mass? Current Opinion in Biotechnology, 19, 153-159.

[14] Chen, Y.T. and Ho, T.H. (2013) Design method of non-imaging secondary (NIS) for CPV usage. Journal of Solar Energy, 93, 32-42.

[15] Patel, P. (2012) Cheaper LED light bulbs are on the way. MIT Technology Review.

[16] 杨名舟 (2013) 中国新能源. 中国水利水电出版社, 北京.

分享
Top