以杆状病毒为基础的表面展示与基因表达系统
Baculovirus Based Display and Gene Delivery System

作者: 冷 勇 :西南大学荣昌校区动物医学系,重庆; 宋振辉 :西南大学荣昌校区动物医学系,重庆;新疆农业大学动物医学学院,乌鲁木齐; 张鹦俊 :西南大学荣昌校区图书馆,重庆; 齐小娟 :新疆农业大学动物医学学院,乌鲁木齐;

关键词: 杆状病毒表面展示基因传递Baculovirus Surface Display Gene Delivery

摘要:
杆状病毒表达载体系统已被广泛应用于真核和原核生物的各种蛋白生产。通过与杆状病毒囊膜蛋白gp64融合表达或与特异性的锚定部位结合,可以将外源蛋白质展示在杆状病毒表面。研究发现,携带哺乳动物启动子的重组杆状病毒能将外源基因传递入哺乳动物细胞,实现外源蛋白的有效表达,表达蛋白的结构更接近天然蛋白。杆状病毒作为一种新型的基因表面展示和基因传递系统,具有广阔的应用前景,本文对杆状病毒作为外源蛋白表面展示技术和作为基因传递载体在哺乳动物细胞中表达外源基因的研究进展进行了综述。
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. Through fusing to the entire membrane protein gp64 of baculovirus or combining with special membrane anchor domain, exotic proteins could be expressed on the surface of baculovirus. It was found that baculovirus harboring mammalian expression cassettes could efficiently deliver foreign genes into mammalian cells and successfully express foreign genes. The baculovirus as surface display and gene delivery vector in mammalian cells have extensive prospects. In this article, the progress of baculovirus surface display technology and gene delivery system in mammalian cells was reviewed.

文章引用: 冷 勇 , 宋振辉 , 张鹦俊 , 齐小娟 (2013) 以杆状病毒为基础的表面展示与基因表达系统。 免疫学研究, 1, 1-6. doi: 10.12677/IS.2013.11001

参考文献

[1] 许信刚, 童德文. 杆状病毒表面展示系统及其研究进展[J]. 西北农林科技大学学报, 2009, 37(8): 36-42.

[2] S. A. Monsma, G. W. Blissard. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. Journal of Virology, 1995, 69(4): 2583-2595.

[3] I. Plonsky, J. Zimmerberg, The initial fusion pore induced by-baculovirus GP64 is large and forms quickly. Journal of Cell Biology, 1996, 135(2): 1831-1839.

[4] I. Markovic, H. Pulyaeva, A. Sokoloff, et al. Membrane fusionmediated by baculovirus GP64 involves assembly of stable GP64 trimers into multiprotein aggregates. Journal of Cell Biology, 1998, 143(5): 1155-1166.

[5] 林旭瑗, 陈寅等. 杆状病毒表面展示系统的研究进展[J]. 生物技术通报, 2004, 4: 5-9.

[6] H. Tani, C. K. Limn, C. C. Yap, et al. In vitro and in vivo gene delivery by recombinant baculoviruses. Journal of Virology, 2003, 77(18): 9799-9808.

[7] Y. Kitagawa, H. Tani, C. K. Limn, et al. Li-gand-directed gene targeting to mammalian cells by pseudotype baculoviruses. Journal of Virology, 2005, 79(6): 3639-3652.

[8] A. Facciabene, L. Aurisicchio and N. La Monica. Baculovirus vectors elicit antigen-specific immune responses in mice. Journal of Virology, 2004, 78(16): 8663-8672.

[9] S. D. Chapple, I. M. Jones. Non-polar distribution of green fluorescent protein on the surface of Autographa californica nucleopolyhedrovirus using a heterologous membrane anchor. Journal of Biotechnology, 2002, 95(3): 269-275.

[10] K. Ojala, J. Koski, W. Ernst, et al. Improved display of synthetic IgG-binding domains on the baculovirus surface. Technology in Cancer Research and Treatment, 2004, 3(1): 77-84.

[11] A. R. Mäkelä, H. Matilainen, D. J. White, et al. Enhanced baculovirus-mediated transduction of human cancer cells by tumor- homing peptides. Journal of Virology, 2006, 80(13): 6603-6611.

[12] S. P. Kukkonen, K. J. Airenne, V. Marjomaki, et al. Baculovirus capsid display: a novel tool for transduction imaging. Molecular Therapy, 2003, 8(5): 853-862

[13] W. F. Ijkel, M. Westenberg, R. W. Goldbach, et al. A novel baculovirusenvelope fusion protein with a proprotein convertase cleavage site. Virology, 2000, 275(1): 30-41.

[14] O. Lung, M. Westenberg, J. M. Vlak, et al. Pseu-dotyping Autographacalifornica multicapsid nucleopolyhedrovirus (AcMNPV): F proteinsfrom group II NPVs are functionally analogous to AcMNPV GP64. Journal of Virology, 2002, 76(11): 5729-5736.

[15] 曹翠平, 吴小锋. 昆虫杆状病毒应用于哺乳动物基因治疗的研究进展[J]. 微生物学报, 2006, 46(4): 668-672.

[16] 余倩. 杆状病毒凋亡抑制基因的研究进展[J]. 生物技术通报, 2011, 2: 33-36.

[17] Y. Li, X. Wang, H. Guo, et al. Axonal transport of recombinant baculovirus vectors. Molecular Therapy, 2004, 10(6): 1121- 1129.

[18] 王建明. 杆状病毒疫苗载体的应用研究进展[J]. 微生物学免疫学进展, 2011, 39(3): 64-67.

[19] L. Garam, H. Dongun, Y. S. Jae, H. K. Jae and Y. Sorah. Protenomic analysis of swine hepatitis E virus (sHEV)-infected livers reveals upregulation of apolipoprotein and down regulation of ferritin heavy chain. Immunology & Medical Microbiogy, 2011, 61(3): 359-363.

[20] T. Hideyuki, T. Toshinori, J. Suljid, N. Shigeo, T. Masaharu, N. Tsutomu, M. Hitoshi and Y. Yasuyuki. A549 and PLC/PRF /5 cells can support the efficient propagatioin of swine and wild boar hepatitis E virus (HEV) strains: Demonstration of HEV infectivity of porcine liver sold as food. Archives of Virology, 2012, 157(2): 235-246.

[21] Y. Z. Hou, S. C. Dong, Q. W. Yi, G. H. Qi, C. C. Huan and F. L. Zheng. Both swine and human cells are capable to support the replication of swine hepatitis E virus type 4 in vitro. Virus Research, 2011, 158(1): 289-293.

[22] 兰丽盼, 吴小锋. 昆虫杆状病毒研究和应用新进展[J]. 农业生物技术学报, 2008, 16(6): 1056-1060.

[23] 潘永飞. 重组杆状病毒作为一种新型的基因治疗载体的研究[D]. 华中农业大学, 2009.

[24] 卢新亚. SARS CoV类病毒颗粒免疫原性的研究与杆状病毒作为活载体疫苗载体的初步探索[D]. 中国科学院武汉病毒研究所, 2007.

[25] J. P. Condreay, S. M. Witherspoon, W. C. Clay, et al. Transient and stabke gene exprission in mammalian cells transduced with a recombinant baculovirus vector. Proceedings of the National Academy of Sciences USA, 1999, 96(1): 127.

[26] C. Kenoutis, R. C. Efrose, L. Swevers, et al. Baculovirus-me- diated gene delivery into mammalian cells does not alter their transcriptional and differentiating potential but is accompanied by early viral gene expression. Journal of Virology, 2006, 80(8): 4135-4146.

[27] K. Chikako, K. Yuuki, T. Shuhei, et al. Baculovirus GP64-mediated entry into mammalian cells. Journal of Virology, 2012, 86(5): 2610-2620.

[28] X. W. Chun, W. Shu. A PH-sensitive heparin-binding sequence from gp64 protein of baculovirus is important for binding to mammalian cells but not to sf9 insect cells. Journal of Virology, 2012, 86(1): 484-491.

分享
Top