压裂完井工具高压模拟井筒壁厚的研究
Research on High Pressure Simulation Wellbore Wall Thickness with Crushing Completion Tools

作者: 贾庆升 , 叶金胜 , 伊伟锴 :中石化胜利油田采油院,东营; 张立军 , 丁国栋 :中国石油大学机电工程学院,青岛;

关键词: 模拟井筒壁厚内压数值模拟Simulation Wellbore Wall Thickness Internal Pressure Numerical Simulation

摘要:
介绍了压裂完井工具高压模拟井筒试验装置的组成和作用。建立了高压模拟井筒的三维仿真模型,并对模拟井筒上的测压孔进行了处理。利用ANSYS软件,对不同壁厚的模拟井筒进行了数值模拟分析。仿真结果表明,当模拟井筒承受105 MPa内压时,测压孔处屈服应力最大,且模拟井筒材料选用35CrMo,壁厚为40 mm时,内径121 mm的模拟井筒可满足设计要求。

Abstract:
Composition and function of high pressure simulation wellbore experimental equipment with crushing com- pletion tools are introduced. A three-dimensional simulation model of high pressure simulation wellbore is established and the pressure tapping hole is also processed. By means of ANSYS software, the numerical simulations of simulation wellbore with different wall thicknesses are carried out. The simulation results show that the yield stress at pressure tapping hole is maximal when the simulation wellbore bears 105 MPa pressure. For 35CrMo material, the simulation wellbore with the internal diameter 121 mm can meet the design requirements, and its wall thickness is 40 mm.

文章引用: 贾庆升 , 叶金胜 , 伊伟锴 , 张立军 , 丁国栋 (2013) 压裂完井工具高压模拟井筒壁厚的研究。 机械工程与技术, 2, 110-112. doi: 10.12677/MET.2013.24021

参考文献

[1] 朱涵超, 吕庭豪 (2001) 高温超高压容器的设计与试验. 武汉造船, 3, 12-15.

[2] 严国平, 刘正林, 费国标, 关北海 (2005) 基于ANSYS的高压密封容器开孔的有限元计算. 机电工程技术, 12, 59-61.

[3] 邵国华 (2002) 超高压容器设计.化学工业出版社, 北京.

[4] 中华人民共和国国家质量监督检验检疫总局 (2005) 超高压容器安全技术监察规程.

分享
Top