基于Real BCH码的联合信源信道编码技术
The Joint Source Channel Coding Technology Based on Real BCH Code

作者: 高荣蔓 , 黄晓红 :河北联合大学信息系,唐山;

关键词: Real BCH编码联合信源信道编码(JSCC)小波变换子带纠错Real BCH Coding Joint Source-Channel Coding (JSCC) Wavelet Transform Sub Band Error Correcting

摘要: 构建了基于Real BCH的联合信源信道编码系统,考虑量化噪声和信道噪声,将由量化、给定转移概率的二进制对称信道、反量化构成的实际联合信道建模为GBG (Gaussian background noise and Bernoulli Gaussian impulse noise)信道模型。图像经过小波子带分解后在基于Real BCH的联合信源信道编码系统中进行传输。Matlab仿真比较了信道在不同的转移概率状况下图像的传输效果。当信道的转移概率为103时,峰值信噪比PSNR达到39.5225 dB。仿真结果表明,基于Real BCH码的联合信源信道编码具有较好的图像传输效果,Real BCH编码具有较好的纠错性能。
Joint source-channel coding system based on Real BCH is constructed in this paper. Considering the quantization and channel noise, the real physical channel (quantization, inverse quantization, and binary system channel) is modeled as Gaussian-Bernoulli-Gaussian (GBG) channel model. Image is transmitted in the joint source channel coding system based on Real BCH after wavelet decomposition. Image transmission effect is compared though Matlab simulation. PSNR is 39.5225 dB when the channel transmission probability is 10−3. Simulation results show that Real BCH code has better error correcting performance and joint source channel coding system based on Real BCH has better image transmission effect.

文章引用: 高荣蔓 , 黄晓红 (2013) 基于Real BCH码的联合信源信道编码技术。 无线通信, 3, 134-138. doi: 10.12677/HJWC.2013.36021

参考文献

[1] Vembu, S., Verdu, S. and Steinberg, Y. (1995) The source channel separation theorem revisited. IEEE Transactions on Information Theory, 41, 44-54.

[2] 张宗橙 (2003) 纠错编码原理和应用. 电子工业出版社, 北京.

[3] 肖嵩 (2004) 无线信道中的联合信源信道编码研究. 西安电子科技大学, 西安.

[4] 刘军清 (2006) 无线图像传输中的联合信源信道编码研究. 上海交通大学, 上海.

[5] Gabay, A., Duhamel, P. and Rioul, O. (2000) Real BCH codes as joint source channel code for satellite images coding. GlobeCom, 2, 820-824.

[6] 曾勇, 于聪梅, 宁云隆 (2009) BCH纠错码的性能分析与仿真实现. 信息技术, 13, 9.

[7] Labeau, F., Chiang, J.-C., Kieffer, M., et al. (2005) Oversampled filter banks as error correcting codes: Theory and impulse noise correction. IEEE Transactions on Signal Processing, 53, 4619- 4630.

[8] Abid Noor, A., Samad, S.A. and Hussain, A. (2009) Develop- ment of a background noise cancellation system using efficient oversampled DFT filter banks. Australian Journal of Basic and Applied Sciences, 3, 1185-1197.

[9] Akbari, M. and Labeau, F. (2011) Instantaneous erasures in oversampled filter banks: Conditions for output perfect recons- truction. IEEE Transaction on Signal Processing, 59, 5800-5813.

[10] Abidl, M., Kiefferl, M. and Pesquet-Popescul, B. (2011) Con- sistent reconstruction of the input of an oversampled filter bank from noisy subbands. European Signal Processing Conference, Barcelona, 29 August-2 September 2011, 844-848.

分享
Top