多元插值格式的计算机实现
Acquired by Computer on the Schemes of Multivariate Interpolation

作者: 崔利宏 , 王晓婉 , 杨一浓 :辽宁师范大学数学学院,大连; 鲍 焕 :大连理工大学数学学院,大连;

关键词: 适定结点组多元多项式多元插值Well-Posed Node Set The Multivariate Polynomial The Multivariate Interpolation

摘要:
多元插值是目前计算数学领域的一个热门研究问题,这源于它在多元函数列表、有限元法、工业产品外形设计等实际科研生产中的广泛应用。本文首先介绍了多元插值的基本概念,进而研究了多元插值函数的存在唯一性问题,也就是如何选择结点组才能使多元插值多项式函数惟一存在问题,同时本文给出了多元插值结点组的一些构造方法,如:直线法叠加法、弧线叠加法。本文将这两种构造方法应用到具体的示例中,最后应用本文给出的构造方法,我们用MATLAB软件来分别实现了二元一次、二元二次和二元三次插值,并将它们进行了对比,发现随着插值多项式次数的增加插值效果也越来越好
>Multivariate interpolation is one of the hot research problems of computational mathematics, which derives its widespread application in the list, the multiple functions of finite element method, industrial prod- uct design, research and production. This paper first introduces the basic concepts of multivariate interpola- tion, and then studies the existence and uniqueness of multivariate interpolation function, that is, how to cho- ose the set of nodes to make the existence and uniqueness of multivariate interpolation polynomial function at the same time; this paper gives some construction methods on set of nodes for multivariate interpolation, such as: linear superposition method and curve superposition method. The application of construction method is given in this paper. We use MATLAB software to realize binary linear interpolation, binary quadric and bi- nary cubic interpolation and find that interpolation effect is also getting better and better along with the in- crease in the degree of interpolation polynomial

文章引用: 崔利宏 , 王晓婉 , 杨一浓 , 鲍 焕 (2013) 多元插值格式的计算机实现。 应用数学进展, 2, 179-185. doi: 10.12677/AAM.2013.24024

参考文献

[1] 王仁宏 (2005) 数值逼近. 高等教育出版社, 北京.

[2] 梁学章, 李强 (2005) 多元逼近. 国防工业出版社, 北京.

[3] Kincaid D. and Cheney W. 著, 王国荣, 余耀明, 徐兆亮, 译 (2005) 数值分析. 机械工业出版社, 北京.

[4] 崔利宏, 姜志敏 (2008) 关于多元分次插值结点组适定性问题的研究. 延边大学学报(自然科学版), 2, 86-88.

[5] 梁学章 (1979) 二元插值的适定结点组与迭加插值法. 吉林大学自然科学学报, 1, 27-32.

[6] 张德峰 (2010) MATLAB数值分析第二版. 机械工业出版社, 北京.

[7] 张德峰, 著 (2007) MATLAB数值分析与应用. 国防工业出版社, 北京.

分享
Top