﻿ 支付红利下Black-Scholes方程的交替分段C-N格式解法

# 支付红利下Black-Scholes方程的交替分段C-N格式解法Alternating Segment C-N Algorithm for Black-Scholes Equation with Dividend Paying

Black-Scholes方程是金融数学中期权定价的重要模型，研究它的数值解法具有非常重要的理论意义和实际应用价值。本文对支付红利下Black-Scholes方程构造了一种具有并行本性的交替分段Crank-Nicolson格式(ASC-N格式)，给出格式解的存在唯一性、稳定性和收敛性分析；理论分析和数值试验表明ASC-N格式与经典格式C-N计算精度相当，但是其计算效率(计算时间)要比经典C-N节省近40%；数值试验验证了理论分析，表明本文ASC-N格式对求解支付红利下Black-Scholes方程是有效的。

Abstract:
Black-Scholes equation is an important model in option pricing theory of financial mathematics, which is very practical in the application of numerical computation. This paper constructs a kind of parallel alternating segment Crank-Nicolson (ASC-N) scheme for solving the payment of dividend Black-Scholes equation. Secondly, it gives the existence and uniqueness of solution, stability and convergence analysis of the scheme. The theoretical analysis and numerical examples demonstrate that ASC-N scheme has same computational accuracy with C-N scheme’s, but its computational efficiency (computational time) can save nearly 40% compared with C-N scheme. Numerical experiment verifies the theoretical analysis, and it shows that ASC-N scheme is effective for solving Black-Scholes equation with dividend paying.

 Kwork, Y.K. (2011) Mathematical models of financial derivatives. The World Book Publishing Company, Beijing.

 姜礼尚 (2008) 期权定价的数学模型和方法(第2版).高等教育出版社, 北京.

 赵胜民 (2008) 衍生金融工具定价.中国财政经济出版社, 北京.

 Ballester, C., Company, R. and Jodar, L. (2008) An efficient method for option pricing with discrete dividend payment. Computers and Mathe- matics with Applications, 56, 822-835.

 Company, R., Navarro, E., Pintos, J.R. et al. (2008) Numerical solution of linear and nonlinear Black-Scholes option pricing equations. Com- puters and Mathematics with Applications, 56, 813-821.

 Yang, X.Z., Liu, Y.G. and Wang, G.H. (2007) A study on a new kind of universal difference schemes for solving Black-Scholes equation. International Journal of Information and Systems Sciences, 3, 251-260.

 唐耀宗, 金朝嵩 (2006) 有红利美式看跌期权定价的Crank-Nicolson有限差分法. 经济数学, 4, 349-352.

 吴立飞, 杨晓忠 (2011) 支付红利下Black-Scholes方程的显隐和隐显差分格式解法. 中国科技论文在线精品论文, 13, 1207-1212.

 Evans, D.J. and Sahimi, M.S. (1989) The numerical solution of Burgers’ equations by the alternating group explicit (AGE) method. Interna- tional Journal of Computer Mathematics, 29, 39-64.

 张宝琳 等 (1999) 数值并行计算原理与方法. 国防工业出版社, 北京.

 陆金甫, 张宝琳, 徐涛 (1998) 求解对流-扩散方程的交替分段显–隐式方法. 数值计算与计算机应用, 3, 161-167.

 王文洽 (2002) 对流–扩散方程的一类交替分组方法. 高等学校计算数学学报, 4, 289-297.

 张锁春 (2010) 抛物型方程定解问题的有限差分数值计算. 科学出版社, 北京.

Top