基于模式匹配的目标轨迹预测方法
Prediction Method Based on Target Trajectory Pattern Matching

作者: 赖 群 :广东电网公司云浮供电局,云浮; 锦业余 , 姜绍艳 :广东电网公司中山供电局,中山; 李 莉 :北京邮电大学网络与交换技术国家重点实验室,北京;

关键词: 数据挖掘目标轨迹预测移动模式匹配前缀共享树Data Mining Target Trajectory Prediction Mobile Pattern Matching Prefix-Shared Tree

摘要: 本文在目标轨迹预测中采用了数据挖掘的方法,提出了一个具体的基于移动模式匹配的目标轨迹预测算法。该方法通过不断挖掘历史移动轨迹来构造前缀共享树的方法挖掘出频繁移动模式,之后通过模式匹配预测出目标的移动轨迹。仿真结果表明该算法的时间消耗和空间消耗较小,同时具有很高的预测准确性。

Abstract: A specific target trajectory prediction algorithm based on mobile pattern matching is proposed, which is called PS-Tree algorithm. In this algorithm, historical data of targets’ movements generated in monitored region are used for pattern mining, coordinate series of targets are converted to region trajectory series, and frequent moving modes are figured out by building up PS-tree. The algorithm matches current trajectories with the ones in pattern library to forecast the movements of the target when a target moves into monitored region. The simulation results prove that PS-Tree algorithm has low time and space consumption but high prediction accuracy.

文章引用: 赖 群 , 锦业余 , 姜绍艳 , 李 莉 (2013) 基于模式匹配的目标轨迹预测方法。 无线通信, 3, 123-128. doi: 10.12677/HJWC.2013.36019

参考文献

[1] Ketterlin, A. (1997) Clustering sequences of complex objects. Proceedings of KDD Conference, ACM, New York, 215-218.

[2] Nanni, M. (2002) Clustering methods for spatio-temporal data. PhD Thesis, University of Pisa, Pisa.

[3] Nanni, M. and Pedreschi, D. (2006) Time-focused density-based clustering of trajectories of moving objects. Journal of Intel- ligent Information Systems, 27, 1-20.

[4] Lee, J.-G., Han, J.W. and Whang, K.-Y. (2007) Trajectory clustering: A partition-and-group framework. Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, Beijing, 12-14 June 2007, 593-604.

[5] Giannotti, F., Nanni, M. and Pedreschi, D. (2006) Efficient mining of sequences with temporal annotations. Proceedings of SIAM Conference on Data Mining, SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 346-357.

[6] Giannotti, F., Nanni, M., Pinelli, F. and Pedreschi, D. (2007) Trajectory pattern mining. KDD’07, ACM, New York, 330-339.

[7] Agrawal, R. and Srikant, R. (1994) Fast algorithms for mining- association rules. Proceedings of the 20th VLDB Conference, Santiago, 12-15 September 1994, 487-499.

[8] Han, J.W., Pei, J. and Yin, Y.W. (2000) Mining frequent patterns without candidate generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, ACM, New York, 1-12.

分享
Top