脑网络研究述评
A Review on Researches of Brain Networks

作者: 涂 燊 , 曹晓君 :西华师范大学教育学院; 赵 光 :辽宁师范大学心理学院; 王 婷 , 邱 江 , 张庆林 :西南大学心理学院;认知与人格教育部重点实验室;

关键词: 图论脑网络模型动态变化建构主义Graph Brain Networks Modeling Dynamic Changes Constructivism

摘要: 认知神经科学传统的定位式研究方法越来越显示出其局限性,近些年兴起的脑网络研究可以克服这种局限。脑网络研究可以从以下几个方面进行主要的了解:1) 脑网络研究的必要性;2) 脑网络介绍,包括结构网络、功能网络和它们所具有的网络性质,还有两者之间关系的简单探讨;3) 临床网络研究;4) 研究新趋向,包括模型取向及脑网络的动态变化研究;5) 脑网络研究的局限性及挑战。
 The accumulating evidence shows that the traditional modular paradigm used in the cognitive neuroscience has serious limitations in understanding the brain. However, brain network may overcome the limitation. Brain networks can be understood from following respects: 1) the necessity of brain network studies; 2) introduction to brain networks, including how to construct structural and functional brain networks, properties and relations; 3) clinical brain network studies; 4) the new direction for future brain network studies, including modeling and dynamical changes of brain networks; 5) the limitations of brain network studies and challenges.

文章引用: 涂 燊 , 赵 光 , 曹晓君 , 王 婷 , 邱 江 , 张庆林 (2013) 脑网络研究述评。 心理学进展, 3, 277-283. doi: 10.12677/AP.2013.36042

参考文献

[1] 何大韧, 刘宗华, 汪秉宏(2009). 复杂系统与复杂网络. 北京: 高等教育出版社.

[2] 蒋田仔, 刘勇, 李永辉(2009). 脑网络:从脑结构到脑功能. 生命科学, 2期, 181-188.

[3] 孙俊峰, 洪祥飞, 童善保(2010). 复杂脑网络研究进展——结构、功能、计算与应用. 复杂系统与复杂性科学, 4期, 74-90.

[4] Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26, 63-72.

[5] Averbeck, B. B., & Seo, M. (2008). The statistical neuroanatomy of frontal networks in the macaque. PLoS Computational Biology, 4, e1000050.

[6] Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17, 348-360.

[7] Bassett, D. S., Greenfield, D. L., Meyer-Lindenberg, A., Weinberger, D. R., Moore, S. W., & Bullmore, E. T. (2010). Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Computational Biology, 6, e1000748.

[8] Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108, 7641-7646.

[9] Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1001-1013.

[10] Behrens, T. E., & Sporns, O. (2012). Human connectomics. Current Opinion in Neurobiology, 22, 144-153.

[11] Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537-541.

[12] Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277-290.

[13] Brezina, V. (2010). Beyond the wiring diagram: Signalling through complex neuromodulator networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2363-2374.

[14] Büchel, C., Coull, J. T., & Friston, K. J. (1999). The predictive value of changes in effective connectivity for human learning. Science, 283, 1538-1541.

[15] Buckner, R. L., & Vincent, J. L. (2007). Unrest at rest: Default activity and spontaneous network correlations. Neuroimage, 37, 1091-1096.

[16] Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7, 113-140.

[17] Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186-198.

[18] Carandini, M. (2012). From circuits to behavior: A bridge too far? Nature Neuroscience, 15, 507-509.

[19] Chartrand, G., & Zhang, P. (2005). Introduction to graph theory. Boston: The McGraw-Hill Companies, Inc.

[20] Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., & Moritz, C. H., et al. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology, 21, 1636-1644.

[21] De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage, 29, 1359-1367.

[22] Denk, W., Briggman, K. L., & Helmstaedter, M. (2012). Structural neurobiology: Missing link to a mechanistic understanding of neural computation. Nature Reviews Neuroscience, 13, 351-358.

[23] Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., & Miezin, F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational biology, 5, e1000381.

[24] Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115-125.

[25] Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5-14.

[26] Gabrieli, J. D. E., McGlinchey-Berroth, R., Carrillo, M. C., Gluck, M. A., Cermak, L. S., & Disterhoft, J. F. (1995). Intact delay-eyeblink classical conditioning in amnesia. Behavioral Neuroscience, 109, 819-827.

[27] Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., & Evans, A. C., et al. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19, 524-536.

[28] Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 72-78.

[29] He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17, 2407-2419.

[30] He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's Disease. Journal of Neuroscience, 28, 4756-4766.

[31] Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82, 111-121.

[32] Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500, 168-174.

[33] Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104, 10240-10245.

[34] Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., & Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106, 2035-2040.

[35] Honey, C. J., Thivierge, J., & Sporns, O. (2010). Can structure predict function in the human brain? Neuroimage, 52, 766-776.

[36] Honey, C. J., & Sporns, O. (2008). Dynamical consequences of lesions in cortical networks. Human Brain Mapping, 29, 802-809.

[37] Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X., & Milham, M. P. (2012). Characterizing variation in the functional connectome: promise and pitfalls. Trends in Cognitive Sciences, 16, 181-188.

[38] Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., & Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425, 954-956.

[39] Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., & Ameis, S., et al. (2013). Developmental changes in organization of structural brain networks. Cerebral Cortex, 23, 2072-2085.

[40] Koch, M. A., Norris, D. G., & Hund-Georgiadis, M. (2002). An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage, 16, 241-250.

[41] Lichtman, J. W., & Denk, W. (2011). The Big and the Small: Challenges of Imaging the Brain’s Circuits. Science, 334, 618-623.

[42] Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., & Song, M., et al. (2008). Disrupted small-world networks in schizophrenia. Brain, 131, 945-961.

[43] Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., & Phillips, M. D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage, 12, 582-587.

[44] Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., & Muller, U., et al. (2010). Functional connectivity and brain networks in schizophrenia. The Journal of Neuroscience, 30, 9477-9487.

[45] Malach, R., Amir, Y., Harel, M., & Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proceedings of the National Academy of Sciences, 90, 10469-10473.

[46] Murias, M., Webb, S. J., Greenson, J., & Dawson, G. (2007). Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biological Psychiatry, 62, 270-273.

[47] Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press, Inc.

[48] Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14, 180-190.

[49] Rombouts, S. A. R. B., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Human brain Mapping, 26, 231-239.

[50] Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M., & Moscovitch, M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17, 1241-1251.

[51] Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E., & Lehnertz, K. (2008). Evolving functional network properties and syn-chronizability during human epileptic seizures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18, 33119.

[52] Sporns, O. (2010). Networks of the Brain. Cambridge: The MIT Press.

[53] Stephan, K. E., Tittgemeyer, M., Knösche, T. R., Moran, R. J., & Friston, K. J. (2009). Tractography-based priors for dynamic causal models. Neuroimage, 47, 1628-1638.

[54] Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4, e1000100.

[55] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., & Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273-289.

[56] van den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20, 519-534.

[57] Van Den Heuvel, M., Mandl, R., & Pol, H. H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3, e2001.

[58] Van Ooyen, A. (2003). Modeling neural development. The MIT Press.

[59] Vértes, P. E., Alexander-Bloch, A. F., Gogtay, N., Giedd, J. N., Rapoport, J. L., & Bullmore, E. T. (2012). Simple models of human brain functional networks. Proceedings of the National Academy of Sciences, 109, 5868-5873.

[60] Wang, J., Zuo, X., & He, Y. (2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 16.

[61] Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q. J., & Zhang, H., et al. (2009). Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 30, 638-649.

[62] Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., & McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106, 1279-1284.

[63] Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 252, 13-18.

[64] Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., & Pantelis, C., et al. (2010). Whole-brain anatomical networks: Does the choice of nodes matter? Neuroimage, 50, 970-983.

分享
Top