一种基于T-OFT的组密钥管理协议
Group Key Management Based on T-OFT

作者: 徐超 * , 李晖 , 刘迪 :北京邮电大学计算机学院,北京;

关键词: 组播密钥管理TPMOFTT-OFTMulticast Group Key Management TPM OFT T-OFT

摘要:
针对集中式组播密钥管理协议具有前向安全、后向安全、同谋破解等问题,本文提出了一种基于三叉树(Ternary Tree)OFT组密钥管理协议(T-OFT)。使用三叉树的逻辑密钥结构,减少了密钥服务器存储密钥的数量,有效的降低了存储和通信开销。并借用可信安全模块(TPM)来产生和保存密钥信息,确保没有密钥信息显式的出现在TPM之外,保证了密钥的绝对安全。当组成员关系发生变化时,本协议通过更新组密钥保证前后向安全和防止同谋破解,提供了一种安全高效的组密钥管理服务。分析结果表明,该协议可以有效的降低存储和通信开销,并能保证密钥服务器的物理安全性
>A novel group key management protocol based on Ternary Tree and One-way Function (T-OFT) is proposed in this paper to avoid the problem about forward confidentiality, backward confidentiality and conspiracy attack. The ternary tree is used in the protocol which reduces the number of storing keys and lowers the cost of storage and communication. We also use TPM to generate and store keys to ensure no keys outside plainly, guaranteeing absolute security of keys. The group key will be renewed when group members join or quit in order to provide a safe key management module. The protocol overcomes the above defects and lowers the cost of storage and communication, and could guarantee the physical security of the key server.

文章引用: 徐超 , 李晖 , 刘迪 (2013) 一种基于T-OFT的组密钥管理协议。 计算机科学与应用, 3, 297-301. doi: 10.12677/CSA.2013.37052

参考文献

[1] M. W. Xu, X. H. Dong and K. Xu. A survey of research on key management for multicast. Journal of Software, 2004, 15(1): 141-150.

[2] B. Jiang, X. Hu. A survey of group key manage-ment. Interna- tional Conference of Science and Software Engi-neering, 2008, 3: 994-1002.

[3] S. A. Mortazavi, A. N. Pour and T. Kato. An efficient distributed group key management us-ing hierarchical approach with Diffie-Hellman and Symmetric Algorithm: DHSA. International Symposium on Computer Networks and Distributed Systems (CNDS), 2011: 49-54.

[4] B. R. Purushothama, B. B. Amberker. Group key management scheme for simultaneous multiple groups with overlapped mem- bership. IEEE 2011 Third International Con-ference on Commu- nication Systems and Networks, 1-10.

[5] M. Hajyvahabzadeh, E. Eidkhani, S. A. Mortazavi and A. N. Pour. A new group key management protocol using code for key calculation: CKC. 2010 International Conference on Information Science and Applications (ICISA), 2010: 1-6.

[6] W. H. D. Ng, M. Howarth, Z. Sun and H. Cruickshank. Dynamic balanced key tree management on computers. 2007, 56(5): 590- 605.

[7] Y.-R. Chen, W.-G. Tzeng. Efficient and provably-secure group key management scheme using key deri-vation. IEEE 11th Inter- national Conference on Trust, Security and Computing and Com- munications, 2012.

[8] R. Velumad-hava Rao, K. Selvamani and R. Elakkiya. A secure key transfer protocol for group communication. Advanced Com- puting: An International Journal (ACIJ), 2012, 3(6).

[9] 王巍. 群组密钥管理的理论与关键技术研究[D]. 2008.

[10] M. Yasir. Efficient group key management schemes for multicast dynamic. Com-munication Systems, 2012.

[11] D. A. Mcgrew, A. T. Sherman. Key establishment in large dy- namic groups using one-way function trees. Tech Rep No. 0755, TIS Labs at Network Associ-ates, Inc., Glenwood.

[12] X. Chang, H. G. Zhang, D. G. Feng, Z. F. Cao and J. W. Huang. Survey of information security. Sci-ence in China Series F-Infor- mation Science, 2008, 50(3): 273-298.

[13] TCG Group. TCG architecture overview specifi-cation. 2004. https://www.trustedcomputeringgroup.org/home

[14] W. Z. Yang, Z. Y. Zhang and X. H. Wu. Internet technology and appli-cations. International Conference on Digital Object Identi- fier, 2010: 1-4.

分享
Top