四次PH曲线C1Hermite插值的一种新方法
A New Method for C1Hermite Interpolation of Quartic PH Curve

作者: 高晖 , 寿华好 :浙江工业大学理学院,杭州; 缪永伟 :浙江工业大学计算机科学与技术学院,杭州; 王丽萍 :浙江工业大学经贸管理学院,杭州;

关键词: Bézier曲线PH曲线Hermite插值Bézier Curve PH Curve Hermite Interpolation

摘要:

通过使用参数曲线的复数表示形式给出了求解四次PH曲线插值的一个新定理,找到了五个控制顶点的内在关系式,优点是形式上非常简洁且可直接求得参数曲线,从而简化了计算,使得四次PH曲线更加方便应用于各工业产品设计及加工领域。

Abstract: By means of complex representation of parametric curve, a new theorem for C1Hermite interpolation of quartic PH curve is proposed, and an intrinsic relationship between five control points of a quartic PH curve is estab- lished. The advantage of this representation is that the form is very simple and it can be used to calculate the quartic PH curve directly. Therefore, the calculation is greatly simplified, which makes the quartic PH curve more easily be applied to industrial product design and manufacture.

文章引用: 高晖 , 寿华好 , 缪永伟 , 王丽萍 (2013) 四次PH曲线C1Hermite插值的一种新方法。 计算机科学与应用, 3, 6-11. doi: 10.12677/CSA.2013.37A002

参考文献

[1] Meek, D.S. and Walton, D.J. (1997) Geometric Hermite inter- polation with Tschirnhausen cubics. Journal of Computational and Applied Mathematics, 81, 299-309.

[2] Farouki, R.T. and Neff, C.A. (1995) Hermite interpolation by Pythagorean hodograph quintics. Mathemat-ics of Computation, 64, 1589-1609.

[3] Yong, J. and Zheng, W. (2005) Geometric method for Hermite interpolation by a class of PH quintics. Journal of Computer- Aided Design & Computer Graphics, 17, 990-995.

[4] Juttler, B. (2001) Hermite interpolation by Pythagorean hodo- graph curves of degree seven. Mathematics of Computation, 70, 1089-1111.

[5] 桂校生, 黄有度 (2010) 四次抛物-PH曲线的Hermite插值. 佳木斯大学学报, 2, 281-284.

[6] 张威, 王国瑾 (2011) 四次PH曲线的渐开线及其几何Hermite螺线插值. 计算机辅助几何设计与图形学学报, 2, 216-222.

[7] 王国瑾, 汪国昭, 郑建民 (2001) 计算机辅助几何设计. 高等教育出版社, 北京, 278-318.

分享
Top