1973~2013年青海湖水面面积变化遥感动态分析
Remote Sensing Monitoring Study for the Tendency of Qinghai Lake’s Water Area in Last 41 Years

作者: 沈亚文 * , 陈华 :武汉大学水利水电学院&水资源与水电工程科学国家重点实验室,武汉; 许崇育 :武汉大学水利水电学院&水资源与水电工程科学国家重点实验室,武汉;奥斯陆大学地学系,奥斯陆,挪威;

关键词: 青海湖水面面积遥感NDVI变化趋势Qinghai Lake Water Surface Area Remote Sensing NDVI Variation Tendency

摘要: 近年来受到全球气候变化和多种极端天气影响,青海湖水域面积呈现较大波动。为充分掌握青海湖水域面积变化规律,以指导流域水资源配置和生态环境保护,本文分析了青海湖自1973年以来41年的遥感影像,计算出了各年的水面面积,并与多种气象要素对比分析。结果表明,青海湖水域面积在1973~2004年整体减小,并以2004年为分界点,2004~2013年又逐渐增加;2004年相比1973年面积减少了231.4 km2,2013年相比2004年面积增加了134.233 km2。青海湖水面面积受气温和日照影响显著,具有较好相关性;降雨和蒸发与青海湖面积呈现弱相关性。通过综合分析,作者认为青海湖水面面积自2004年快速增加的主要原因有:1) 气温、日照、风速减小,湖区水量损失减小;2) 年降雨量随临近地区冰川融化加快而增加;3) 人类活动影响减小,植被覆盖度增加。

Abstract: In recent years, affected by global climate change and extreme weather events, the water surface area of Qinghai Lake fluctuates significantly. In order to grasp the variability of Qinghai Lake’s water area so as to provide guidance of basin water resource allocation and eco-environmental protection, remote-sensing images from 1973 to 2013 were used to calculate the water area of Qinghai Lake. Results show that Qinghai Lake’s water area has a tendency to decrease from 1973 to 2004 as a whole; and 2004 was found as a turning point, after which it gradually increases up to the end of the study period. Compared with 1973, the water area reduced 231.4 km2 in 2004 and the difference between 2004 and 2013 is 134.233 km2. Analysis of the meteorological data of the same time period indicates that Qinghai Lake’s water area is affected by the air temperature and sunlight significantly, and it has a weak correlation with rainfall and evaporation. The comprehensive analysis reveals that the rapid increase of the water area of Qinghai Lake since 2004 is mainly due to: 1) the decrease in water loss because of the decrease of temperature, sunlight and wind speed; 2) the increase in rainfall resulting from the acceleration of neighborhood glacier melting; and 3) the increase in vegetation coverage because of the limiting human activities policy.

文章引用: 沈亚文 , 陈华 , 许崇育 (2013) 1973~2013年青海湖水面面积变化遥感动态分析。 水资源研究, 2, 309-315. doi: 10.12677/JWRR.2013.25044

参考文献

[1] ZHANG, G. Q., XIE, H. J., DUAN, S. Q., TIAN, M. Z. and YI, D. H. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. Journal of Applied Remote Sensing, 2011, 5(1): 053532.

[2] 部玉红, 张占峰. 青海湖地区40多年来的气候变化[J]. 青海气象, 2001, 1: 22-25. BU Yuhong, ZHANG Zhanfeng. Climate change of Qinghai Lake in last 40 years. Journal of Qinghai Meteorology, 2001, 1: 22-25. (in Chinese)

[3] 沈芳, 匡定波. 青海湖最近25年变化的遥感调查与研究[J]. 湖泊科学, 2003, 15(4): 289-296. SGEN Fang, KUANG Dingbo. Remote sensing investigation and survey of Qinghai Lake in the past 25 years. Journal of Lake Sciences, 2003, 15(4): 289-296. (in Chinese)

[4] 李林, 汪青春, 等. 环青海湖地区气候变化及其对湖泊水位的影响[J]. 气象科技, 2005, 33(1): 58-62. SHI Xinghe, LI Lin, et al. Climatic change and its influence on water level of Qinghai Lake. Meteorological Science and Tech- ology, 2005, 33(1): 58-62. (in Chinese)

[5] 冯钟葵, 李晓辉. 青海湖近20年水域变化及湖岸演变遥感监测研究[J]. 古地理学报, 2006, 8(1): 131-141. FENG Zhongkui, LI Xiaohui. Remote sensing monitoring study for water area change and lakeshore evolution of Qinghai Lake in last 20 years. Journal of Paleogeography, 2006, 8(1): 131-141. (in Chinese)

[6] 李林, 朱西德, 等. 近42a来青海湖水位变化的影响因子及其趋势预测[J]. 中国沙漠, 2005, 25(5): 689-696. LI Ling, ZHU Xide, WANG Zhengyu, et al. Impacting factors and changing tendency of water level in Qinghai Lake in recent 42 years. Journal of Desert Research, 2005, 25(5): 689-696. (in Chinese)

[7] 刘小园. 青海湖流域水文特征[J]. 水文, 2004, 24(2): 60-61. LIU Xiaoyuan. Hydrological characteristics of Qinghai Lake. Hydrology, 2004, 24(2): 60-61. (in Chinese)

[8] 吴畏, 赵文杰, 等. 遥感数字图像配准技术综述[J]. 红外, 2009, 30(10): 37-43. WU Wei, ZHAO Wenjie, et al. Overview of remote sensing digi- tal image registration technology. Infrared, 2009, 30(10): 37-43. (in Chinese)

[9] 钱乐祥, 李仕峰, 等. 基于单一影像局部回归模型修复的Landsat 7 ETM SLC-OFF图像质量评价[J]. 地理与地理信息科学, 2012, 28(5): 14-21. QIAN Lexiang, LI Shifeng, et al. Image quality evaluation of Landset 7 ETM SLC-OFF based on a single local regression model retrieved. Geography and Geo-Information Science, 2012, 28(5): 14-21. (in Chinese)

[10] Bhandari, A. K., Kumar, A. and Singh, G. K. Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur city. Procedia Technology, 2012, 6: 612-621.

[11] 马鸿旭, 郭生练, 周研来. 基于遥感影像水体信息提取的改进方法[J]. 水资源研究, 2012, 2: 127-133. MA Hongxu, GUO Shenglian and ZHOU Yanlai. Modified wa- ter information extraction method based on remote sensing im- ages. Journal of Water Research, 2013, 2: 127-133.

[12] 张天峰, 王劲松, 等. 西北地区秋季干旱指数的变化特征[J]. 干旱区研究, 2004, 24(1): 87-92. ZHANG Tianfeng, WANG Jinsong, et al. Analysis on the change of aridity index in Northwest in autumn. Arid Zone Re- search, 2004, 24(1): 87-92. (in Chinese)

[13] 时兴合, 李省辰, 等. 青海湖水面蒸发量变化的研究[J]. 气候与环境研究, 2010, 15(6): 787-796. SHI Xinghe, LI Shengchan, et al. A study of the change of Qing- hai Lake evaporation. Climatic and Environmental Research, 2010, 15(6): 787-796. (in Chinese)

[14] 朱延龙, 韩昆, 等. 青海湖流域气候变化特点及水文生态响应[J]. 中国水利水电科学研究院学报, 2012, 10(4): 260-266. ZHU Yanlong, HAN Kun, et al. Climate change and responses of hydro-ecology in Qinghai Lake Watershed. Journal of China Institute of Water Resources and Hydropower Research, 2012, 10(4): 260-266. (in Chinese)

[15] 孙永亮, 李小雁, 等. 青海湖流域气候变化及其水文效应[J]. 资源科学, 2008, 30(3): 354-362. SUN Yongliang, LI Xiaoyan, et al. Climate change and hydro- logical response in watershed of Qinghai Lake. Resources Sci- ence, 2008, 30(3): 354-362. (in Chinese)

分享
Top