31-P Nuclear Magnetic Resonance (31P-NMR) in Environmental Phosphorus Analysis

作者: 陆瑾 * , 郝红 , 高博 :中国水利水电科学研究院,北京; 王海文 , 贾建丽 :中国矿业大学(北京) 化学与环境工程学院,北京;

关键词: 31P-NMR形态分析环境31P-NMR Phosphorus Morphological Analysis Environment

摘要: 磷-31核磁共振(31P-NMR)技术因可以增强研究者对环境中磷素组分信息的认识而广受关注。本文综述了该技术在环境磷素形态表征方面的研究成果,对31P-NMR技术的原理、样品制备方法及分析流程进行了系统阐述。环境样品的制备过程(包括样品前处理方法、提取时间、提取剂比例、样品浓缩方法等)对检测结果的精密度和准确度具有显著影响。论文同时综述了该技术在土壤、湖泊、海洋及湿地磷循环等研究领域的研究成果,并对该技术未来的研究及应用重点进行了展望,旨在为环境磷形态分析中的核磁共振技术的发展应用以及标准化研究提供借鉴。

Abstract: Due to its advantages in improving our knowledge about the P fractions in environmental samples, the 31-P nuclear magnetic resonance (31P-NMR) technology has received extensive attention. This paper summarized the current studies on the characterization of P fractions in sediments by using this technology, and described the technical principles, sample preparation method and analytical procedures of this technol- ogy. The preparation procedures of environmental samples have a significant influence on the accuracy and precision of testing results, including determination of sample pretreatment, extraction time, sample to ex- traction ratio and concentration method. The specific application fields of this technology were also summa- rized in this paper. 31P-NMR technology has been applied in the field of Soil, Lake, Ocean, Wetland, and has made a number of achievements. Some future research focuses were expected in this paper in order to pro- vide theoretic support for the development and application as well as standardization of 31P-NMR technology in the future.

文章引用: 陆瑾 , 王海文 , 郝红 , 高博 , 贾建丽 (2013) 环境磷形态分析中的磷-31核磁共振技术。 土壤科学, 1, 15-20. doi: 10.12677/HJSS.2013.13004


[1] 徐进, 张奇. 表流湖滨湿地磷素汇-源功能研究[J]. 环境科学学报, 2007, 27(10): 1617-1622.

[2] 梁海清, 王圣瑞, 金相灿等. 不同污染程度沉积物不同粒级有机磷形态及其分布[J]. 农业资源与环境科学, 2007, 23(3): 380-385.

[3] 李海宗, 潘梅. 富营养化水体底泥磷释放的研究进展[J]. 安徽农业科学, 2012, 40(21): 11008-11010, 11013.

[4] J. Hu, L. Liu and Y. You. Phosphorus fraction and phosphate adsorption characteristics analysis of Xuanwu Lake sediments. 2009.

[5] R. A. Bowman, C. V. Cole. Transformations of organic phos- phorus substrates in soils as evaluated by NaHCO3 extraction. Soil Sciences, 1978, 125(2): 95-101.

[6] N. Majed, Y. Y. Li and A. Z. Gu. Advances in techniques for phosphorus analysis in biological sources. Current Opinion in Biotechnology, 2012, 23(6): 852-859.

[7] R. H. Newman, K. R. Tate. Soil phosphorus characterization by 31P NMR. Communications in Soil Science and Plant Analysis, 1980, 11: 835-842.

[8] 彭喜玲, 方海兰, 占新华等. 利用31P核磁共振技术研究污泥中磷在土壤中的形态转换[J]. 农业环境科学学报, 2009, 28(10): 2104-2110

[9] J. Lehmann, Z. D. Lan, C. Hyland, et al. Long-term dynamics of phosphorus forms and retention in manure-amended soils. En- vironmental Science & Technology, 2005, 39(17): 6672-6680.

[10] 王晓钧, 丁士明, 蒋海青等. 湖泊磷核磁共振(NMR)分析——1环境标准样品的31P-NMR[J]. 湖泊科学, 2008, 20(1): 45-50.

[11] B. J. Cade-Menun. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spe- ctroscopy. Talanta, 2005, 66(2): 359-371.

[12] 钱轶超, 陈英旭, 楼莉萍等. 核磁共振技术在沉积物磷素组分及迁移转化规律研究中的应用[J]. 应用生态学报, 2010, 21(7): 1892-1898.

[13] B. J. Cade-Menun, C. R. Benitez-Nelson and P. Pellechia. Re- fining 31P nuclear magnetic resonance spectroscopy for marine particulate samples: Storage conditions and extraction recovery. Marine Chemistry, 2005, 97(3-4): 293-306.

[14] 白秀玲, 周云凯, 李斌等. 基于液相31P核磁共振分析的沉积物样品制备方法研究[J]. 环境科学, 2011, 32(7): 1980- 1985.

[15] B. L. Turner, B. J. Cade-Menun, L. M. Condron, et al. Extrac- tion of soil organic phosphorus. Talanta, 2005, 66(2): 294-306.

[16] I. M. Cardoso, P. V. Meer, O. Oenema, et al. Analysis of phos- phorus by 31PNMR in Oxisols under agro forestry and conven- tional coffee systems in Brazil. Geoderma, 2003, 112(1): 51-70.

[17] R. Carman, G. Edlund and C. Damberg. Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: A 31P-NMR study. Chemical Geology, 2000, 163(1-4): 101-114

[18] W. Amelung, A. Rodionov, I. S. Urusevskaja, et al. Forms of or- ganic phosphorus in zonal steppe soils of Russia assessed by 31P NMR. Geoderma, 2001, 103(3): 335-350.

[19] G. Guggenberger, L. Haumaier, R. J. Thomas, et al. Assessing the organic phosphorus status of an Oxisol under tropical pas- tures following native savanna using 31P NMR spectroscopy. Bi- ology and Fertility of Soils, 1996, 23(3): 332-339.

[20] M. B. Turrion, F. Lafuente and M.-J. Aroca. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and 31P-NMR spectroscopy analysis. Science of the Total Environment, 2010, 408(16): 3342-3348.

[21] M. I. Makarov, L. Haumaier, W. Zech, et al. Can 31P NMR spec- troscopy be used to indicate the origins of soil organic phos- phates? Soil Biology & Biochemistry, 2005, 37(1): 15-25.

[22] B. J. Cade-Menun, C. W. Liu, R. Nunlist and J. G. McColl. Soil and Litter Phosphorus-31 Nuclear Magnetic Resonance Spectro- scopy. Journal of Environmental Quality, 2002, 31(2): 457-465.

[23] M. Hupfer, R. Gachter and H. Ruegger. Polyphosphate in lake sediments: 31PNMR spectroscopy as a tool for its identification. Limnology and Oceanography, 1995, 40(3): 610-617.

[24] R. W. McDowwell, G. F. Koopmans. Assessing the bioavailabil- ity of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertilizer. Soil Biol- ogy & Biochemistry, 2006, 38(1): 61-70.

[25] B. L. Turner, N. Mahieu and M. Leo. The phosphorus composi- tion of temperate pasture soils determined by NaOH-EDTA ex- traction and solution 31P NMR spectroscopy. Condron. Organic Geo-chemistry, 2003, 34(8): 1199-1210.

[26] C.-Y. Chiu, C.-W. Pai and K.-L. Yang. Characterization of phosphorus in subalpine forest and adjacent grassland soils by che- mical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy. Pedobiologia, 2005, 49(6): 655-663.

[27] J. Ahlgren, H. De Brabandere, K. Reitzel, et al. Characterization of phosphorus in sub-al pine forest and adjacent grassland soils by chemical extraction and phosphorus-31 nuclear magnetic re- sonance spectroscopy. Journal of Environmental Quality, 2007, 36(3): 892-898.

[28] J. Ahlgren, K. Reitzel, H. De Brabandere, et al. Release of or- ganic P forms from lake sediments. Water Research, 2011, 45(2): 565-572.

[29] 白秀玲, 周云凯, 李斌等. 利用31P核磁共振技术优化太湖沉积物有机磷的化学提取方法[J]. 环境科学学报, 2011, 31(5): 996-1003.

[30] C. N. Bedrock, M. V. Cheshire, J. A. Chudek, et al. Use of 31P- NMR to study the forms of phosphorus in peat soils. Science of the Total Environment, 1994, 152(1): 1-8.

[31] B. L. Turner, S. Newman and K. R. Reddy. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry. Environmental Science & Technology, 2006, 40(10): 3349-3354.

[32] R. W. McDowell, I. Stewart. An improved technique for the de- termination of organic phosphorus in sediments and soils by 31P nuclear magnetic resonance spectroscopy. Chemistry and Ecol- ogy, 2005, 21(1): 11-22.

[33] K. Reitzel, K. Ahlgren, H. DeBrabandere, et al. Degradation rates of organic phosphorus in lake sediment. Biogeochemistry, 2007, 82(1): 15-28.

[34] X. L. Bai, S. M. Ding, C. X. Fan, et al. Organic phosphorus spe- cies in surface sediments of a large,shallow, eutrophic lake, Lake Taihu, China. Environmental Pollution, 2009, 157(8-9): 2507- 2513.

[35] J. Y. Liu, H. Wang, H. J. Yang, et al. Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environmental Pollution, 2009, 157(1): 49-56.

[36] J. P. Gustafsson, L. B. Mwamila and K. Kergoat. The pH de- pendence of phosphate sorption and desorption in Swedish agricultural soils. Geoderma, 2012, 189-190: 304-311.

[37] R. W. McDowell, I. Stewart and B. J. Cade-Menun. An exami- nation of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy. Journal of Environmental Quality, 2006, 35(1): 293-302.

[38] B. L. Turner, N. Mahier, and J. M. Condron. Phosporus-31 nu- clear magnetic resonance spectral assignaments of phosphorus compounds in soil NaOH-EDTA Extracts. Soil Science Society of America Journal, 2003, 67(2): 497-510.

[39] D. Uhlmann, H. D. Bauer. A remark on microorganisms in lake sediments with emphasis on polyphosphate-accumulation bacte- ria. Gesamten Hydrobiologie, 1998, 73: 703-708.

[40] R. W. McDowell, T. I. Stewart. The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: Sequential extraction and 31P NMR. Ge- oderma, 2006, 130(1): 176-189.

[41] S. Backnäs, H. Laine-Kaulio and B. Kløve. Phosphorus forms and related soil chemistry in preferential flowpaths and the soil matrix of a forested podzolic till soil profile. Geoderma, 2012, 189-190: 50-64.

[42] B. L. Turner, S. Newman and W. Alexander. Sample pretreat- ment and phosphorus speciation in wetland soils. Soil Science Society of America Journal, 2007, 71(5): 1538-1546.

[43] M. Li, J. Zhang, G. Q. Wang, et al. Organic phosphorus fra- ctionation in wetland soil profiles by chemical extraction and pho- sphorus-31 nuclear magnetic resonance spectroscopy. Applied Geochemistry, 2013, 33: 213-221.

[44] B. L. Turner, S. Newman. Phosphorus cycling in wetland soils: The importance of phosphate diesters. Journal of Environmental Quality, 2005, 34(5): 1921-1929.