Effect of PPAR-β Gene on Human Colon Cancer Growth in Vivo and Molecular Mechanism

作者: 马钦 , 于永扬 , 王存 , 周锦 , 陈珂玲 , 杨烈 , 周总光 :四川大学华西医院,消化外科研究室,胃肠外科中心,成都;

关键词: 过氧化物酶体增殖物激活受体结肠肿瘤肿瘤生长血管内皮生长因子PPAR-β Colon Cancer Carcinogenesis VEGF

摘要: 目的:探讨过氧化物酶体增殖物激活受体-β (peroxisome proliferator-activated receptor-β, PPAR-β)对人结肠癌细胞裸鼠移植瘤生长的影响及机制。方法:分别将PPAR-β特异性沉默和野生型的人结肠癌细胞KM12C种植于裸鼠背部皮下,动态监测移植瘤体积,20天后取瘤体称重,免疫组化比较二者分化程度;荧光定量PCR(RT- PCR)、免疫组化、Western blot检测体内外人结肠癌细胞血管内皮生长因子(VEGF)表达;此外,用PPAR-β特异性激动剂GW501516处理离体细胞,检测VEGF与剂量的相关性。结果:PPAR-β沉默组的移植瘤生长速度明显快于对照组,并且低分化肿瘤的比例、VEGF表达水平显著高于对照组。特异性激活沉默组的PPAR-β并没有改变其VEGF的表达,在对照组中则观察到VEGF水平与激活程度呈剂量相关性降低。结论:PPAR-β沉默在移植瘤中发挥了促瘤作用,提示PPAR-β可能是结肠癌细胞的抑癌基因,并可伴有阻止VEGF表达的作用。To explore the effect of peroxisome proliferator-activated receptor-β (PPAR-β) gene on human colon cancer growth in vivo and the molecular mechanism. Methods: The models of colon cancer xenografts in nude mice were established by respectively subcutaneous injected human colon cancer cell line KM12C with PPAR β knockdown or untreated. The xenografts were measured daily and weighted 20 days later. The results of two groups were compared by immunohistochemisty (IHC). Vascular endothelial growth factor (VEGF) was detected by real-time reverse-transcription (RT-PCR), IHC, Western blot. Meanwhile, KM12C cell was treated in vitro by using PPAR-β ago- nist GW501516 and then the relativity of the dose and VEGF was analyzed. Result: The xenografts in PPAR β-knock- down group grew significantly earlier and larger and they were more frequently less-differentiated compared to those in control group. Meanwhile, the expression of VEGF, either in xenografts or in KM12C cell line, was significantly higher in PPAR β-knockdown group than that in control group. Moreover, specific activation of PPAR β didn’t change the expression of VEGF in the KM12C cells with PPAR β knockdown, while yielded a dose-dependent decrease of VEGF in those without PPAR β knockdown. Conclusion: These findings indicate that PPAR β may induce the differentiation and inhibit the growth of colon cancer, which may be associated with its inhibition effect on VEGF in colon cancer cells.


文章引用: 马钦 , 于永扬 , 王存 , 周锦 , 陈珂玲 , 杨烈 , 周总光 (2013) PPAR-β基因对人结肠癌细胞裸鼠成瘤的影响及机制研究。 世界肿瘤研究, 3, 24-32. doi: 10.12677/WJCR.2013.33005


[1] P. A. Grimaldi. Metabolic and nonmetabolic regulatory functions of peroxisome proliferator-activated receptor b. Current Opinion in Lipidology, 2010, 21(3): 186-191.

[2] J. M. Peters, F. J. Gonzalez. Sorting out the functional role(s) of peroxisome proliferator-activated receptor-beta/delta (PPAR- beta/delta) in cell proliferation and cancer. Biochimica et Bio- physica Acta, 2009, 1796(2): 230-241.

[3] B. P. Kota, T. H. Huang and B. D. Roufogalis. An overview on biological mechanisms of PPARs. Pharmacological Research, 2005, 51: 85-94.

[4] T.-C. He, T. A. Chan, B. Vogelstein and K. W. Kinzler. PPARd is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 1999, 99(3): 335-345.

[5] L. Yang, H. Zhang, Z. G. Zhou, H. Yan, G. Adell, et al. Biologi- cal function and prognostic significance of peroxisome prolif- erator-activated receptor {delta} in rectal cancer. Clinical Cancer Research, 2011, 17(11): 3760-3770.

[6] L. Yang, B. Olsson, D. Pfeifer, J. I. Jönsson, Z. G. Zhou, et al. Knockdown of peroxisome proliferator-activated receptor-beta induces less differentiation and enhances cell-fibronectin adhe- sion of colon cancer cells. Oncogene, 2010, 29(4): 516-526.

[7] L. Yang, Z. G. Zhou, H. Z. Luo, B. Zhou, Q. J. Xia, et al. Quan- titative analysis of PPARdelta mRNA by real-time RT-PCR in 86 rectal cancer tissues. European Journal of Surgical Oncology, 2006, 32(2): 181-185.

[8] M. Schmuth, C. M. Haqq, W. J. Cairns, J. C. Holder, S. Dorsam, S. Chang, et al. Peroxisome proliferator-activated receptor (PPAR)- beta/delta stimulates differentiation and lipid accumulation in keratinocytes. Journal of Investigative Derma-tology, 2004, 122 (4): 971-983.

[9] A. D. Burdick, D. J. Kim, M. A. Peraza, F. J. Gonzalez, J. M. Pe- ters. The role of peroxisome proliferator-activated receptor-β/δ in epithelial cell growth and differentiation. Cell Signal, 2006, 18(1): 9-20.

[10] D. J. Kim, M. T. Bility, A. N. Billin, T. M. Willson, F. J. Gon- zalez, et al. PPAR-β/δ selectively induces differentiation and in- hibits cell proliferation. Cell Death & Differentiation, 2006, 13: 53-60.

[11] F. Varnat, B. B. Heggeler, P. Grisel, N. Boucard, I. Corthésy -Theulaz, et al. PPAR-β/δ regulates paneth cell differentiation via controlling the hedgehog signaling pathway. Gastroenterol- ogy, 2006, 131(2): 538-553.

[12] B. H. Park, B. Vogelstein and K. W. Kinzler. Genetic disruption of PPARd decreases the tumorigenicity of human colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2598-2603.

[13] F. S. Harman, C. J. Nicol, H. E. Marin, J. M. Ward, F. J. Gon- zalez, et al. Peroxisome proliferator-activated receptor-δ attenu- ates colon carcinogenesis. Nature Medicine, 2004, 10(5): 481- 483.

[14] E. H. Holly, M. G. Borland, A. N. Billin, T. M. Willson, F. J. Gonzalez, et al. Ligand activation of peroxisome proliferator- activated receptor-b/d (PPARb/d) and inhibition of cyclooxy- genase 2 (COX2) attenuate colon carcinogenesis through inde- pendent signaling mechanisms. Carcinogenesis, 2008, 29(1): 169-176.

[15] R. A. Gupta, R. N. Dubois. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Reviews Cancer, 2001, 1(1): 11-21.

[16] D. Hanahan, J. Folkman. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3): 353-364.

[17] E. K. Bergsland. Vascular endothelial growth factor as a thera- peutic target in cancer. American Journal of Health-System Pharmacy, 2004, 61(21): S4-S11.

[18] D. Wang, H. Wang, Y. Guo, W. Ning, S. Katkuri, et al. Crosstalk between Peroxisome proliferator-activated receptor delta and VEGF stimulates cancer progression. Proceedings of the Na- tional Academy of Sciences of the United States of America, 2006, 103(50):19069-19074.

[19] H. Lin, J. L. Lee, H. H. Hou, C. P. Chung, S. P. Hsu, et al. Mo- lecular mechanisms of the antiproliferative effect of beraprost, a prostacyclin agonist, in murine vascular smooth muscle cells. Journal of Cellular Physiology, 2008, 214(2): 434-441.

[20] S. A. Kliewer, B. M. Forman, B. Blumberg, E. S. Ong, U. Borg- meyer, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proceedings of the National Academy of Sciences of the United States of America,1994, 91(15): 7355-7359.

[21] E. E. Girroir, H. E. Hollingshead, P. He, B. Zhu, G. H. Perdew, et al. Quantitative expression patterns of peroxisome proliferator- activated receptor-b/d (PPARb/d) protein in mice. Biochemical and Biophysical Research Communications, 2008, 371(3): 456- 461.

[22] M. Uhlén, E. Björling, C. Agaton, C. A. Szigyarto, B. Amini, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Molecular & Cellular Proteomics, 2005, 4(12): 1920- 1932.

[23] L. Berglund, E. Björling, P. Oksvold, L. Fagerberg, A. Asplund, et al. A genecentric human protein Atlas for expression profiles based on antibodies. Molecular & Cellular Proteomics, 2008, 7(10): 2019-2027.

[24] H. J. Lim, S. Lee, J. H. Park, K. S. Lee, H. E. Choi, et al. PPAR δ agonist L-165041 inhibits rat vascular smooth muscle cell pro- liferation and migration via inhibition of cell cycle. Atherosclerosis, 2009, 202(2): 446-454.

[25] C. H. Lee, P. Olson, A. Hevener, I. Mehl, L. W. Chong, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9): 3444-3449.