V型液晶分子系统的蒙特卡罗模拟
Monte Carlo Simulations of Liquid Crystals Formed by V-Shaped Molecules

作者: 叶晓芳 * , 吴晨旭 :厦门大学物理系软凝聚态实验室,厦门;

关键词: V型分子电偶极矩蒙特卡罗相变双轴向列相V-Shaped Molecules Electric Dipole Moment Monte Carlo Phase Transition Biaxial Nematic

摘要: 本文采用蒙特卡罗方法研究电偶极矩对V型液晶分子系统相变行为的影响。计算结果表明,随着分子电偶极矩强度的增加,系统的朗道点,即各向同性相到双轴向列相的相变不仅仅发生在当分子夹角为正四面体角()时,而是出现了一系列的朗道点,换句话说,朗道点变成了一条朗道线。此外,双轴向列相的范围明显扩大,从而大大提高双轴向列相出现的概率。

Abstract: Monte Carlo simulations have been performed to study the phase diagram of liquid crystals formed by V-shaped molecules with an electric dipole moment. Simulation results show that as the electric dipole moment in-creases, the Landau point where phase transits directly from the isotropic to the biaxial nematic occurs not only when the bend angle is at the tetrahedral angle () but also at other bend angles. In other words, the Landau point be-comes a Landau line. Besides, the range of the biaxial nematic phase has been immensely expanded, indicating a more stable biaxial nematic phase.

文章引用: 叶晓芳 , 吴晨旭 (2013) V型液晶分子系统的蒙特卡罗模拟。 现代物理, 3, 106-113. doi: 10.12677/MP.2013.34019

参考文献

[1] M. J. Freiser. Ordered states of a nematic liquid. Physical Review Letters, 1970, 24(19): 1041-1043.

[2] R. Alben. Phase transitions in a fluid of biaxial particles. Physical Review Letters, 1973, 30(17): 778-781.

[3] J. P. Straley. Ordered phases of a liquid of biaxial particles. Physical Review A, 1974, 10(5): 1881-1887.

[4] G. R. Luckhurst, S. Romano. Computer simulation studies of anisotropic systems: II. Uniaxial and biaxial nematics formed by non-cylindrically symmetric molecules. Molecular Physics, 1980, 40(1): 129-139.

[5] F. Biscarini, C. Chiccoli, P. Pasini, et al. Phase diagram and orientational order in a biaxial lattice model: A Monte Carlo study. Physical Review Letters, 1995, 75(9): 1803-1806.

[6] L. J. Yu, A. Saupe. Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures. Physical Review Letters, 1980, 45(12): 1000-1003.

[7] H. H. Wensink, G. J. Vroege and H. N. W. Lekkerkerker. Biaxial versus uniaxial nematic stability in asymmetric rod-plate mixtures. Physical Review E, 2002, 66(4): 041704.

[8] F. M. van der Kooij, H. N. W. Lekkerkerker. Liquid-crystalline phase behavior of a colloidal rod-plate mixture. Physical Review Letters, 2000, 84(4): 781-784.

[9] M. C. Artala, K. J. Toynea, J. W. Goodbya, et al. Synthesis and mesogenic properties of novel board-like liquid crystals. Journal of Materials Chemistry, 2001, 11(11): 2801-2807.

[10] B. R. Acharya, A. Primak and S. Kumar. Biaxial nematic phase in bent-core thermotropic mesogens. Physical Review Letters, 2004, 92(14): 145506.

[11] L. A. Madsen, T. J. Dingemans, M. Nakata, et al. Thermotropic biaxial nematic liquid crystals. Physical Review Letters, 2004, 92(14): 145505.

[12] P. I. C. Teixeira, A. J. Masters and B. M. Mulder. Biaxial nematic order in the hard-boomerang fluid. Molecular Crystals and Liquid Crystals, 1998, 323(1): 167-189.

[13] M. A. Bates, G. R. Luckhurst. Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation study. Physical Review E, 2005, 72(5): 051702.

[14] P. A. Lebwohl, G. Lasher. Nematic-liquid-crystal order—A Monte Carlo calculation. Physical Review A, 1972, 6(1): 426-429.

[15] 谢毓章. 液晶物理学[M]. 北京: 科学出版社, 1988: 413-416.

[16] C. V. Yelamaggad, S. Krishna Prasad, G. G. Nair, et al. A low- molar-mass, monodispersive, bent-rod dimer exhibiting biaxial nematic and smectic A phases. Angewandte Chemie, 2004, 116 (26): 3511-3514.

分享
Top