四元数四维间隔不变性和时空坐标变换
Quaternion, Invariance of 4-Dimensional Interval and Transformations of Spacetime Coordinates

作者: 丁光涛 :安徽师范大学物理与电子信息学院,芜湖;

关键词: 狭义相对论四元数时空四维间隔不变性Lorentz变换Special Relativity Quaternion Space-Time Invariance of 4-Dimensional Interval Lorentz Transformation

摘要: 利用四元数研究狭义相对论中的时空坐标变换。1) 导出保持四维间隔不变性的时空坐标一般变换的四元数形式,说明四维间隔不变性不能唯一确定Lorentz变换。2) 根据保持时间不变的条件,从一般变换中得到第一类特殊变换,其中包含空间旋转变换。3) 根据保持一个空间坐标不变的条件,从一般变换中得到第二类特殊变换,其中包含正常的Lorentz变换;同时指出某些文献中的四元数形式Lorentz变换式有待商榷之处。4) 从时空坐标一般变换中引入两种不同于传统的空间旋转变换和正常的Lorentz变换的新型变换,一种是离散变换,包含恒等变换,反射变换,换位变换等;另一种是单边变换。
By the use of quaternion, the transformations of space-time coordinates in special relativity are studied. 1) The general transformations in quaternion form are derived, which preserve the invariance of 4-dimensional interval, and it is found that the invariance of the interval can not determine the Lorentz transformation uniquely. 2) Based on the con-dition that preserves the invariance of time, the general transformations reduce to the first kind of special transforma-tions, in which the space rotations are included. 3) Based on the condition that preserves the invariance of a space coor-dinate, the general transformations reduce to the second kind of special transformations, in which the proper Lorentz transformations are included. It is pointed out that the quaternion form of Lorentz transformations in some literatures should be amended. 4) From the general transformations in quaternion form, two types of new transformations are introduced, which are discrete transformations, including identical, reflection and transposition ones, and unilateral transformations. These new transformations are different from the traditional space rotations and the normal Lorentz transformations.

文章引用: 丁光涛 (2013) 四元数四维间隔不变性和时空坐标变换。 现代物理, 3, 99-105. doi: 10.12677/MP.2013.34018

参考文献

[1] A. 爱因斯坦等, 著, 赵志田, 刘一贯, 译. 相对论原理[M]. 北京: 科学出版社, 1980: 32-43.

[2] W. 泡利, 著, 凌德洪, 周万生, 译. 相对论[M]. 上海: 上海科学技术出版社, 1979: 1-15.

[3] 朗道•栗弗席兹, 著, 任朗, 袁炳南, 译. 场论[M]. 北京: 人民教育出版社, 1959: 13-17.

[4] P. R. Girard. The quaternion group and modern physics. Euro- pean Journal of Physics, 1984, 5(1): 25-32.

[5] A. Waser. Application of bi-quaternions in physics. 2007. www.andre-waser.ch/Publications/ApplicationOfBiQuaternionsInPhysics_EN.pdf

[6] S. De Leo, G. Ducati. Quaternionic groups in physics: A panoramic reviewInternational Journal of Theoretical Physics, 1999, 38(8): 2197-2220.

[7] 许方官. 四元数物理学[M]. 北京: 北京大学出版社, 2012: 16-24.

[8] I. Abonyi, J. F. Bito and J. K. Tar. A qua-ternion representation of the Lorentz group for classical applications. Journal of Physics A: Mathematical and General, 1991, 24(14): 3245-3254.

[9] S. De Leo. Quaternion and special relativity. Journal of Mathe- matical Physics, 1996, 37(6): 2955-2968.

[10] M. S. Alam, S. Bauk. Quaternion Lorentz transformation. Phys- ics Essays, 2011, 24(2): 158-162.

[11] 王振宇, 范文涛. Lorentz变换的四元数表示[J]. 数学物理学报, 2010, 30A(5): 1377-1381.

[12] 陈光. 广义时空变换理论[J]. 汕头大学学报(自然科学版), 1994, 2: 15-26.

[13] 丁光涛. 双四元数形式的电磁理论[J]. 中国科学:物理学•力学•天文学, 2012, 42(10): 1029-1039.

[14] 丁光涛. 偏振光学的四元数方法[J]. 光学学报, 2013, 33(7): 0726001

[15] A. P. Yefremov. Quaternions: Algebra, geometry and physical theories. Hypercomplex Numbers in Geometry and Physics, 2004, 1: 104-119.

[16] 肖尚彬. 四元数方法及其应用[J]. 力学进展, 1993, 23(2): 249-260.

分享
Top