硅掺杂二氧化钛交联壳聚糖的合成及对水中Cu2+的吸附研究
Preparation of Si Doped TiO2 Cross-Linked Chitosan and Its Adsorption of Cu2+ from Aqueous Solution

作者: 封荣光 * , 张小军 , 薛建军 :南京航空航天大学材料科学与技术学院,南京;

关键词: Cu2+壳聚糖硅掺杂二氧化钛吸附Cu2+ Chitosan Silicon Doped TiO2 Adsorption

摘要: 将壳聚糖与硅掺杂二氧化钛进行共混,在弱碱性条件下加入戊二醛制的硅掺杂二氧化钛交联壳聚糖。用红外光谱(FTIR)对硅掺杂二氧化钛交联壳聚糖进行表征,研究了pH值、Cu2+初始浓度、吸附剂投加量对Cu2+吸附的影响,并利用LangmuirFreundilich模型对等温吸附进行拟合。实验结果表明最佳吸附pH = 5,对Cu2+浓度50 mg/L的水溶液在30℃下最大Cu2+去除率可达96.5%;吸附符合LangmuirFreundlich模型,最大吸附量为119.05 mg/g

Abstract:

In the condition of alkalescence, the Si doped TiO2 cross-linked chitosan was prepared by mixing glutaraldehyde, silicon doped titanium dioxide and cross-linking chitosan. Infared spectra of chitosan before and after modification shows that silicon doped titanium dioxide is mingled successfully into chitosan. The effect of pH value, initial concentration of Cu2+ and the amount of adsorbent on the absorption efficiency were studied. The absorption isotherm was described by the models of both Langmuir and Freundilich equations. The results indicated that the removal rate of Cu2+ is 96.5% in initial concentration of 50mg/L when pH value is equal to 5 at the temperature of 30˚C. The adsorption isotherms were well fitted by the models of Langmuir and Freundilich equations and the maximum adsorption capacity is 119.05 mg/g.

文章引用: 封荣光 , 张小军 , 薛建军 (2013) 硅掺杂二氧化钛交联壳聚糖的合成及对水中Cu2+的吸附研究。 化学工程与技术, 3, 184-187. doi: 10.12677/HJCET.2013.35033

参考文献

[1] M. V. Dinu, E. S. Dragan. Evaluation of Cu2+, Co2+ and Ni2+ ions re-moval from aqueous solution using a novel chitosan/clinopti- lolite composite: Kinetics and isotherms. Chemical Engineering Journal, 2010, 160: 157-163.

[2] 向华, 于晓英. 铜污染对水体—水生植物的毒害效应研究进展[J]. 湖南农业科学, 2009, 11: 54-56.

[3] 李志强, 王彬彬, 聂俊华. 铜污染对水体—水生植物的毒害效应研究进展[J]. 生态学报, 2009, 29(3): 1108-1114.

[4] 尹丽, 郭琳, 查红平等. 化学沉淀法处理线路板厂络合铜废水实验研究[J]. 环境科学与技术, 2011, 34(9): 149-151.

[5] 祝春水, 王丽萍, 陈钦等. 非晶态磷酸锡去除高盐介质中Cu2+的研究[J]. 环境污染与防治, 2011, 33(8): 40-45.

[6] 彭位华, 桂和荣. 国内铁氧体法处理重金属废水应用现状[J].水处理技术, 2010, 36(5): 22-27.

[7] 陈明, 倪文, 黄万抚. 反渗透处理金铜矿山酸性废水[J]. 膜科学与技术, 2008, 28(3): 95-99.

[8] 刘艳, 梁沛, 郭丽等. 负载型纳米二氧化钛对重金属离子吸附性能的研究[J]. 化学学报, 2005, 63(4): 312-316.

[9] A. I. Adel, A. E. Ayman, A. I. Ibreabrahim, et al. Heavy metal removal using SiO2-TiO2 binary oxide: Experimental design ap- proach. Adsorption, 2008, 14: 21-29.

[10] K. G. K. Warrier, S. Rajesh Kumar, C. P. Sibu, et a1. High tem- perature stabilization of pores in sol-gel titania in pres-ence of silica. Journal of Porous Materials, 2001, 8(4): 311-317.

[11] 宋礼慧. 纳米二氧化钛材料的制备与性能研究[D]. 天津大学2007.

[12] 白利涛, 张丽萍, 林红等. 铜含量测定方法研究[J]. 应用化工, 2011, 40(5): 903-905.

分享
Top