Co3O4(112)晶面催化苯乙烯选择性氧化反应的理论研究
The Theoretical Study of Selective Oxidation of Styrene on Co3O4(112) Surface

作者: 郭海川 , 杨作银 , 李亚平 :北京化工大学,北京;

关键词: Co3O4(112)晶面苯乙烯TBHP催化密度泛函理论Co3O4(112) Surface Styrene TBHP Catalysis Reaction Mechanism Density Functional Theory

摘要: 本文使用量子力学密度泛函方法对Co3O4(112)晶面催化苯乙烯与TBHP的反应进行了理论计算,探索了苯乙烯分子在Co3O4与晶面上O2f位O原子相互作用生成环氧产物并脱附的过程,以及TBHP分子与晶面反应,用自身的一个O原子填补O2f空位,生成叔丁醇最终脱附的过程。

Abstract: In this work, quantum mechanical method of density functional theory is introduced to study the reaction of styrene and TBHP on the Co3O4(112) surface. First, styrene reacts with an oxygen atom on the Co3O4 surface and de- sorbs with leaving an oxygen vacancy. Second, TBHP adsorbs on the crystal surface and fills the vacancy with one oxy- gen atom in itself.

文章引用: 郭海川 , 杨作银 , 李亚平 (2013) Co3O4(112)晶面催化苯乙烯选择性氧化反应的理论研究。 化学工程与技术, 3, 169-174. doi: 10.12677/HJCET.2013.35030

参考文献

[1] C. X. Liu, Q. Liu, L. Bai, et al. Structure and catalytic perform- ances of nanocrystalline Co3O4 catalysts for low temperature CO oxidation prepared by dry and wet synthetic routes. Journal of Molecular Cataly-sis A: Chemical, 2013, 370: 1-6.

[2] J. Q. Sun, Y. P. Li, X. J. Liu, et al. Hierarchical cobalt iron oxide nanoarrays as structured catalysts. Chemical Communications, 2012, 48(28): 3379-3381.

[3] X. W. Xie, Y. Li, Z. Q. Liu, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 2009, 458: 746-749.

[4] L. H. Hu, Q. Peng and Y. D. Li. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane com-bustion. Journal of the American Chemical Society, 2008, 130(48): 16136-16137.

[5] C. Y. Ma, Z. Mu, J. J. Li, et al. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society, 2010, 132(8): 2608-2613.

[6] W. J. Xue, Y. F. Wang, P. Li, et al. Morphology ef-fects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for com-plete oxi- dation of trace ethylene. Catalysis Communications, 2011, 12(13): 1265-1268.

[7] C. J. Jia, M. Schwickardi, C. Weidenthaler, et al. Co3O4-SiO2 nanocomposite: A very active catalyst for CO oxidation with unusual catalytic behavior. Journal of the American Chemical Society, 2011, 133(29): 11279-11288.

[8] X. W. Xie, W. J. Shen. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale, 2009, 1: 50-60.

[9] A. Askarine-jada, M. Bagherzadehb and A. Morsalia. Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Applied Surface Science, 2010, 256(22): 6678-6682.

[10] D. E. Jiang, S. Dai. The role of low-coordinate oxygen on Co3O4(110) in catalytic CO oxidation. Physical Chemistry Chemical Physics, 2011, 13(3): 978-984.

[11] P. J. Costa, M. J. Calhorda and F. E. Kühn. Olefin epoxidation catalyzed by η5-cyclopentadienyl molybdenum compounds: A computational study. Organometallics, 2010, 29(2): 303-311.

分享
Top