Benz定理和赋2-范空间上的Aleksandrov问题
The Benz Theorem and the Aleksandrov Problem in 2-Normed Space

作者: 张 倩 * , 刘玉波 , 宋眉眉 :天津理工大学理学院应用数学系;

关键词: Benz定理 等距AOPP 问题The Benz Theorem 2-Isometry AOPP The Aleksandrov Problem

摘要:
本文首先介绍了定理在去掉了“是严格凸的和”两个条件仍然成立[1]。其后我们通过改变文献[1]中的空间类型,弱化了定理中的条件,得到在2-范空间和n-范空间结论仍然成立,并且使得文献[1]中定理2.1成为本文定理2.3的推论。

Abstract:
In this paper, we introduce Benz theorem that is established without the condition Y is strictly convex and . Then the main theorem holds mainly by changing the type of space in [1] and weaking the conditions of the theorem in 2-normed space and in n-normed space. And the theorem 2.1 in [1] can be used as the corollary of theorem 2.3 in this paper.

文章引用: 张 倩 , 刘玉波 , 宋眉眉 (2013) Benz定理和赋2-范空间上的Aleksandrov问题。 理论数学, 3, 305-311. doi: 10.12677/PM.2013.35047

参考文献

[1] Y. M. Ma, L. J. Liu. The Benz theorem and Aleksandrov problem for preserving distance mapping. International Mathematical Forum, 2012, 7(12): 597-601.

[2] Y. M. Ma. The Aleksandrov problem for unit distance preserving mapping. Acta Mathematica Scientia, 2000, 20(3): 359-364.

[3] A. D. Aleksandrov. Mapping of families of sets. Soviet Mathematics Doklady, 1970, 11: 116-120.

[4] T. M. Rassias, P. Semrl. On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings. Proceedings of The American Mathematical Society, 1993, 132: 919-925.

[5] W. Benz. Isometrien in normierten Rfiumen. Aequationes Mathematicae, 1985, 29: 204-209.

[6] W. Benz and H. Berens. A contribution to a theorem of Ulam and Mazur. Aequationes Mathematicae, 1987, 34: 61-63.

[7] W. Y. Ren. On the Aleksandrov problem in 2-normed linear spaces. Acta Scientiarum Naturalium Universitatis Nabkaiensis, 2008, 41(3): 52-56.

[8] H. Y. Chu. On the Aleksandrov problem in linear n-normed spaces. Nonlinear Analysis, 2004, 59(7): 1001-1011.

[9] H. Y. Chu, C. Park and W. Park. The Aleksandrov problem in linear 2-normed spaces. Journal of Mathematical Analysis and Applications, 2004, 289(2): 666-672.

分享
Top