视觉信息加工中的空间注意与特征注意
Spatial and Feature-Based Attention in Visual Processing

作者: 杨桃蹊 * , 包 燕 :北京大学心理学系及机器感知与智能教育部重点实验室;

关键词: 选择性注意空间注意特征注意Selective Attention Spatial Attention Feature-Based Attention

摘要: 选择性地注意一个空间位置,或者一个刺激特征(如朝向、颜色或形状)能够导致我们探测和报告感觉世界中刺激的能力发生改变,即影响大脑的信息加工过程。已有研究表明,注意既可以指向某个空间位置,又可以指向目标刺激的某个非空间特征,但是对于两者之间关系较少有研究者进行系统地探讨。本文对该领域的研究进行了细致地梳理和归纳,在介绍了相应的理论背景的基础上,结合较新的实验范式,总结归纳了对比空间效应和特征效应的行为和电生理学研究,探讨了空间注意和特征注意可能的认知和神经机制。最后,本文指出对特征注意和空间注意的独立或者联合的作用进行系统地考察是今后研究的一个重要方向
Attention can be selectively directed to a spatial location or non-spatial features of a stimulus. Pre- vious studies have examined the effects of spatial attention and feature-based attention (FBA) on basic visual processes, but whether and how these two types of attention interact with each other still remain unclear. This article aims to systematically summarize all related studies concerning this topic. Following an initial intro- duction of some theoretical backgrounds, it makes an intensive review on both the behavioral and neuron- physiological studies based mainly on some newly developed experimental paradigms, focusing on both the cognitive and neural mechanisms underlying these two types of attention. The authors suggest that besides separate studies a combination of both spatial and feature-based attention should be emphasized in future re- search in this field.

文章引用: 杨桃蹊 , 包 燕 (2013) 视觉信息加工中的空间注意与特征注意。 心理学进展, 3, 221-226. doi: 10.12677/AP.2013.35034

参考文献

[1] Allport, D. A. (1971). Parallel encoding within & between elementary stimulus dimensions. Attention, Perception, & Psychophysics, 10, 104-108.

[2] Baldassi, S., & Verghese, P. (2005). Attention to locations and features: Different top-down modulation of detector weights. Journal of Vi- sion, 5, 556-570.

[3] Busse, L., Katzner, S., Tillmann, C., & Treue, S. (2008). Effects of attention on perceptual direction tuning curves in the human visual system. Journal of Vision, 8, 1-13.

[4] Cohen, M. R., & Maunsell, J. H. (2011). Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neu- ron, 70, 1192-1204.

[5] Carrasco, M. (2011). Visual attention: The past 25 years. Vision Re- search, 51, 1484-1525.

[6] David, S. V., Hayden, B. Y., Mazer, J. A., & Gallant, J. L. (2008). At- tention to stimulus features shifts spectral tuning of V4 neurons dur- ing natural vision. Neuron, 59, 509-521.

[7] Dosher, B. A., & Lu, Z. L. (2000a). Mechanisms of perceptual attention in precuing of location. Vision Research, 40, 1269-1292.

[8] Dosher, B. A., & Lu, Z. L. (2000b). Noise exclusion in spatial attention. Psychological Science, 11, 139-146.

[9] Dakin, S. C., Mareschal, I., & Bex, P. J. (2005). Local and global limitations on direction integration assessed using equivalent noise analysis. Vision Research, 45, 3027-3049.

[10] Enns, J. T., & Di Lollo, V. (2000). What’s new in visual masking? Trends in cognitive sciences, 4, 345-352.

[11] Eckstein, M. P., Shimozaki, S. S., & Abbey, C. K. (2002). The footprints of visual attention in the Posner cueing paradigm revealed by classification images. Journal of Vision, 2, 25-45.

[12] Eriksen, C. W., & Murphy, T. D. (1987). Movement of attentional focus across the visual field: A critical look at the evidence. Attention, Perception, & Psychophysics, 42, 299-305.

[13] Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044.

[14] Herrmann, K., Montaser-Kouhsari, L., Carrasco, M., & Heeger, D. J. (2010). When size matters: Attention affects performance by contrast or response gain. Nature Neuroscience, 13, 1554-1559.

[15] Inman, M. (2006). Tuning in to how neurons distinguish between stim- uli. PLoS Biology, 4, e118.

[16] Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision. Journal of the Optical Society of America, 70, 1458-1471.

[17] Ling, S., Liu, T., & Carrasco, M. (2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49, 1194-1204.

[18] Liu, T., Stevens, S. T., & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47, 108-113.

[19] Lu, Z. L., & Dosher, B. A. (1998). External noise distinguishes mechanisms of attention. Vision Research, 38, 1183-1198.

[20] Lu, Z. L., & Dosher, B. A. (1999). Characterizing human perceptual inefficiencies with equivalent internal noise. Journal of the Optical Society of America A, 16, 764-778.

[21] Lu, Z. L., & Dosher, B. A. (2008). Characterizing observers using external noise and observer models: Assessing internal representations with external noise. Psychological Review, 115, 44-82.

[22] Lu, Z. L., Lesmes, L. A., & Dosher, B. A. (2002). Spatial attention excludes external noise at the target location. Journal of Vision, 2, 312-323.

[23] Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744-751.

[24] Mazer, J. A. (2011). Spatial attention, feature-based attention, and saccades: Three sides of one coin? Biological Psychiatry, 69, 1147- 1152.

[25] McAdams, C. J., & Maunsell, J. H. (2000). Attention to both space and feature modulates neuronal responses in macaque area V4. Journal of Neurophysiology, 83, 1751-1755.

[26] Neri, P. (2004). Attentional effects on sensory tuning for single-feature detection and double-feature conjunction. Vision Research, 44, 3053-3064.

[27] Neri, P., & Levi, D. M. (2006). Receptive versus perceptive fields from the reverse-correlation viewpoint. Vision Research, 46, 2465-2474.

[28] Neri, P., & Levi, D. M. (2008). Temporal dynamics of directional selectivity in human vision. Journal of Vision, 8, 1-11.

[29] Pashler, H., & Johnston, J. C. (1998). Attentional limitations in dual-task performance. In H. Pashler (Ed.), Attention (pp. 155-189). Hove: Psychology Press/Erlbaum (UK) Taylor & Francis.

[30] Patzwahl, D. R., & Treue, S. (2009). Combining spatial and feature-based attention within the receptive field of MT neurons. Vision Research, 49, 1188-1193.

[31] Pelli, D. G., & Farell, B. (1999). Why use noise? Journal of the Optical Society of America A, 16, 647-653.

[32] Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25.

[33] Remington, R. W., Folk, C. L., & McLean, J. P. (2001). Contingent attentional capture or delayed allocation of attention? Perception & Psychophysics, 63, 298-307.

[34] Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611-647.

[35] Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61, 168-185.

[36] Solso, R. L., Maclin, M. K., & Maclin, O. H. (2005). Cognitive psychology (7th ed., pp. 82-83). Beijing: Peking University Press.

[37] Tadin, D., Lappin, J. S., & Blake, R. (2006). Fine temporal properties of center-surround interactions in motion revealed by reverse correlation. Journal of Neuroscience, 26, 2614-2622.

[38] Theeuwes, J. (1989). Effects of location and form cuing on the allocation of attention in the visual field. Acta Psychologica, 72, 177-192.

[39] Tsal, Y. (1983). Movement of attention across the visual field. Journal of Experimental Psychology:Human Perception and Performance, 9, 523-530.

[40] Williford, T., & Maunsell, J. H. (2006). Effects of spatial attention on contrast response functions in macaque area V4. Journal of Neurophysiology, 96, 40-54.

[41] Wyart, V., Nobre, A. C., & Summerfield, C. (2012). Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proceedings of the National Academy of Sciences, 109, 3593-3598.

分享
Top