双分裂导线次档距振荡的气动力模型与解析
Aerodynamic Model and Mathematic Expression of Twin-Conductors’ Subspan Oscillation

作者: 赵延风 , 杨磊 , 于强强 :华北电力大学能源动力与机械工程学院; 梁俊宇 :云南电网公司电力研究院博士后工作站;

关键词: 导线绕流卡门涡街模型准定常气动力升阻力表达式The Flowing Around a Conductor Hypothetical Modal of Karman Vortex Street Quasi-Steady Aerodynamic Force Mathematical Expression of Drag and Lift

摘要: 次档距振荡是分裂导线特有的一种振动现象,由前端导线的尾流引起后端导线的振动。导线绕流其实质是流体的圆柱绕流,通常条件下将在尾流区产生卡门涡街。本文建立了一种理想的卡门涡街模型,在对该模型进行数学解析的基础上,提出了双分裂导线中后端导线绕流的准定常气动力数学表达式,并通过与经典风洞实验所得的气动力系数对比修正该表达式的相关系数,为解决导线绕流问题提出了新的方法。

Abstract: Subspan oscillation is a unique phenomenon to split conductors, in which the flowing of upward conductor causes downward conductor’s vibration. The essence of the flowing around a conductor is the flowing around a cylinder. Karman vortex street will emerge downstream usually. With ahypothetical modal of Karman vortex street being set up in this paper, a mathematical expression of its quasi-steady drag and lift is founded on the base of the analysis of this modal. Then relative coefficient in aforementioned is amended according to the data acquired from wind tunnel testing. Thus a new idea is proposed to solve the question of the flowing around conductors.

文章引用: 赵延风 , 杨磊 , 于强强 , 梁俊宇 (2013) 双分裂导线次档距振荡的气动力模型与解析。 输配电工程与技术, 2, 57-61. doi: 10.12677/TDET.2013.23010

参考文献

[1] Subekti. Identification of nonlinearity of flow-induced vibration for structures having nonlinear property by using wavelet transform. ICROS-SICE International Joint Conference, Fukuoka, 18-21 August 2009: 3339-3342.

[2] S. Singha, K. P. Sinhamahapatra. Flow past a circular cylinder between parallel walls at low Reynolds numbers. Ocean Engi- neering, 2010, 37(8-9): 757-769.

[3] 黄苗苗等. 不同雷诺数的圆柱绕流比较计算与分析[A]. 第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集[C]. 2011.

[4] 孟元元. 圆柱绕流的数值模拟研究[D]. 甘肃农业大学硕士学位论文, 2010.

[5] 陈元坤. 分裂导线的微风振动与次档距振荡研究[D]. 华中科技大学博士学位论文, 2011.

[6] R. L. Wardlaw. Wind tunnel and analytical investigations into the aeroelastic behaviour of bundle conductors. IEEE Transactions on Power Apparatus and Systems, 1975, 94(2): 642-651.

[7] C. B. Rawlins. Fundamental concepts in the analysis of wake- induced oscillation of bundled conductors. IEEE Transactions on Power Apparatus and Systems, 1976, 95(4): 1377-1393.

分享
Top