基于网络的切换控制系统研究综述
Survey of Networked Control Systems Based on Switched Systems

作者: 冯宜伟 , 雒健 :兰州理工大学,兰州;

关键词: 网络切换控制系统稳定性Lyapunov函数NSCS Stability Lyapunov Function

摘要:
本文综述了网络切换控制系统的发展历史及研究现状,首先扼要回顾了切换控制系统相关问题和发展现状,其次介绍网络控制系统的主要特点和存在的问题,最终阐述了网络切换控制系统的产生、发展以及典型控制方法。通过对当前的网络切换控制系统的结构和特征进行分析研究,特别是对受控和非受控网络切换控制系统进行了重点分析。论文旨在从不同侧面探讨网络切换控制系统发展现状,并展望了其未来的发展情景。

Abstract:
In this paper, the past and current development of Networked Switched Control Systems (NSCS) are summarized briefly, and the related problems and main characteristics of the NSCS are introduced. And then, formation, development and the typical approaches for NSCS are discussed. Based on the current state of the NSCS, we also analyze the structure, characteristics of NSCS, especially the constrained and unconstrained switched systems. This paper aims to elaborate the present situation and control methods from various aspects of the NSCS. Finally, the paper discusses the future development of the NSCS.

文章引用: 冯宜伟 , 雒健 (2013) 基于网络的切换控制系统研究综述。 人工智能与机器人研究, 2, 83-90. doi: 10.12677/AIRR.2013.23016

参考文献

[1] W. Zhang, M. S. Branicky and S. M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21(2): 84-99.

[2] G. Pin, T. Parisini. Networked predictive control of constrained nonlinear systems: Recursive feasibility and input-to-state stability analysis. 2009 American Control Conference, Piscataway: IEEE, 2009: 2327-2334.

[3] A. F. Khalil, J. H. Wang. A new stability and time-delay tolerance analysis approach for networked control systems. The 49th IEEE Conference on Decision and Control, Piscataway: IEEE, 2010: 4753-4758.

[4] P. Peleties, R. A. DeCarlo. Asymptotic stability of M-switched systems using Lyapunov functions. Proceedings of 31st IEEE Conference on Decision and Control, Tuscon, 1992: 3438-3439.

[5] M. S. Branicky. Stability of switched and hybrid systems. Pro- ceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista, 1994: 3349-3503.

[6] D. Liberzon. Switching in systems and control. Berlin: Birkhauser, 2003.

[7] H. Lin, P. Antsaklis. Stability and stabilizability of switched linear systems: A short survey of recent results. IEEE Transactions on Automatic Control, 2009, 54(2): 308-322.

[8] Y. Z. Liu, H. B. Yu. Stability of network control systems based on switched technique. Proceedings of the 42nd IEEE Confer- ence on Decision and Control, Hawaii, 2003: 1110-1113.

[9] W. A. Zhang, L. Yu. Output feedback stabilization of network control systems with packet dropouts. IEEE Transactions on Automatic Control, 2007, 52(9): 1705-1710.

[10] H. Lin and P. J. Antsakis. Stability and persistent disturbance attenuation properties for a class of networked control systems: Switched system approach. Control Theory and Applications, 2005, 78(8): 1447-1458.

[11] H. Lin, G. Zhai and P. J. Antsakis. Asymptotic stability and disturbance attenuation properties for a class of networked con- trol systems. Control Theory and Applications, 2006, 4(1): 76- 85.

[12] J. Yu, L. Wang and G. Xie. A switched system approach to stabilization of networked control systems. Journal of Control Theory and Applications, 2006, 4(1): 86-95.

[13] D. Ma and J. Zhao. Exponential stabilization of networked control systems and design of switching controller. Journal of Control Theory and Applications, 2006, 4(1): 96-101.

[14] D. Ma, Z. F. Guo, G. M. Dimirovski, et al. Passive control for networked switched systems with network-induced delays and packet dropout. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, 2009: 4258-4263.

[15] C. K. Tse, M. D. Bernardo. Complex behavior in switching power converters. Proceedings of IEEE, 2002, 90(5): 768-781.

[16] P. Pellanda,P. Apkarian and H. Tuan. Missile autopilot design via a multi-channel LFT/LPV control method. International Journal of Robust and Nonlinear Control, 2002, 12(1): 1-20.

[17] Z. D. Sun and S. S. Ge. Switched linear system-control and design. Berlin: Springer, 2004.

[18] 程代展, 郭宇骞. 切换系统进[J]. 控制理论与应用, 2005, 22(6): 954-960.

[19] 张霞, 高岩等. 切换线性系统稳定性研究进展[J]. 控制与决策, 2010, 25(10): 1441-1450.

[20] S. Boyd, L. El Ghaoui, E. Feron, et al. Linear matrix inequalities in system and control theory. Philadelphia: SIAM, 1994.

[21] D. Liberzon, R. Tempo. Common Lyapunov functions and gradient algorithms. IEEE Transactions on Automatic Control, 2004, 49(6): 990-994.

[22] R. Shorten, K. Narendra. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-inbariant system. International Journal of Adaptive Control and Signal Processing, 2003, 16(10): 709-728.

[23] R. Shorten, K. Narendra and O. Mason. A result on common quadratic Lyapunov functions. IEEE Transactions on Automatic Control, 2003, 48(1): 110-113

[24] L. Gurvits, R. Shorten and O. Mason. On the stability of switched positive linear systems. IEEE Transactions on Automatic Control, 2007, 52(6): 1099-1103.

[25] O. Mason, R. Shorten. Some results in the stability of positive switched linear systems. Proceedings of 43rd IEEE Conference on Decision and Control, Nassau, 2004: 4601-4606.

[26] D. Liberzon, J. P. Hespanha and A. S. Morse. Stability of switched linear systems: A lie-algebraic condition. Systems and Control Letters, 1999, 37(3): 117-122.

[27] T. Laffey, H. Smigoc. Tensor conditions for the existence of a common solution to the Lyapunov equation. Linear Algebra and Its Applications, 2007, 420(2-3): 672-685.

[28] W. Dayawansa, C. F. Martin. A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Transactions on Automatic Control, 1999, 44(4): 751-760.

[29] J. L. Mancilla-Aguilar, R. A. Garcia. A converse Lyapunov theorem for nonlinear switched system. Systems and Control Letters, 2000, 41(1): 67 -71.

[30] C. Yfoulis, R. Shorten. A numerical technique for stability analysis of linear switched systems. International Journal of Control, 2004, 77(11): 1019-1039.

[31] T. Hu, Z. Lin. Composite quadratic Lyapunov functions for constrained control system. IEEE Transactions on Automatic Control, 2003, 48(3): 440-450.

[32] T. Hu, Z. Lin. Properties of the composite quadratic Lyapunov functions. IEEE Transactions on Automatic Control, 2004, 49(7): 1162-1167.

[33] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482.

[34] H. Ye, A. N. Micheal and L. Hou. Stability theory for hybrid dynamical systems. IEEE Transactions on Automatic Control, 1998, 43(4): 461-474.

[35] A. S. Morse. Supervisory control of families of linear setpoint controllers Part I: Exact matching. IEEE Transactions on Automatic Control, 1996, 41(10): 1413-1431.

[36] J. P. Hespanha and A. S. Morse Stability of switched systems with average dwell time. IEEE Decision and Control, 1999: 2655-2660.

[37] D. Wang, W. Wang and P. Shi. Exponential H∞ filtering for switched linear systems with interval time-varying delay. Inter- national Journal of Robust and Nonlinear Control, 2009, 41(5): 532-551.

[38] L. Zhang and H. Gao Asynchronously switched control of switched linear systems with average dwell time. Automatica, 2010, 46(5): 953-958.

[39] S. Pettersson and B. Lennartson. Stabilization of hybrid systems using a min-projection strategy. Proceedings of the 2001 Ameri- can Control Conference, Arlington, 2001: 223-228.

[40] A. Papachristodoulou, S. A. Prajna. Tutorial on sum of squares techniques for systems analysis. Proceedings of the 2005 Ameri- can Control Conference, Portland, 2005: 2686-2700.

[41] S. Prajna, A. Papachristodoulou. Analysis of switched and hybrid systems-beyond piecewise quadratic methods. Proceed- ings of the 2003 American Control Conference, Denver, 2003: 2779-2784.

[42] Z. Sun. A graphic approach for stability of piecewise linear systems. Proceedings of Chinese Conference on Decision and Control, Shanghai, 2009: 1016-1019.

[43] J. Zhao, D. J. Hill. Dissipativity theory for switched systems. IEEE Transactions on Automatic Control, 2008, 53(4): 941-953.

[44] R. K. Tedavallied. Conditions for the existence of a common quadratic Lyapunov function via stability analysis of matrix families. Proceedings of American Control Conference. Anchor- age: AACC Press, 2002: 1296-1301.

[45] D. Cheng, H. Cheng. Accessibility of switched linear systems. Proceedings of the 42nd IEEE Conference on Decision and Control, Mauii: IEEE Press, 2003: 5759-5764.

[46] R. N. Shorten, K. S. Narendar. On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Transactions on Automatic Con- trol, 2003, 48(1): 110-113.

[47] S. S. Ge, Z. Sun and T. H. Lee. Reachability and controllability of switched linear discrete-time system. IEEE Transactions on Automatic Control, 2001, 46(9): 1437-1441.

[48] Z. Sun, D. Zheng. On reachability and stabilization of switched linear systems. IEEE Transactions on Automatic Control, 2001, 46(2): 291-295.

[49] G. Xie, L. Wang. Controllability and stabilization of switched linear-systems. Systems and Control Letters, 2003, 48(2): 135 -155.

[50] D. Cheng. Controllability of switched bilinear systems. IEEE Transactions on Automatic Control, 2005, 50(4): 505-511.

分享
Top