地震波作用下边坡稳定性的区域化时程分析
Zonal Time History Analysis on Slope Stability under Seismic Excitation

作者: 陈臻林 * , 黄楠棋 , 勾婷颖 , 伍鸿兴 , 唐鸥玲 , 罗来超 :地质灾害防治与地质环境保护国家重点实验室,成都;

关键词: 位移矢量动力响应传播特性潜在滑动面Displacement Vector Dynamic Response Propagation Characteristics Potential Sliding Surface

摘要:
本文对地震波在均匀边坡内的传播规律进行了初步探讨。从地震波能量传播的角度,对边坡的整体稳定性进行全面,细致地分析。在实际工程中如果对整个边坡进行分析,计算量过于庞大。因此,本文通过地震波理论将边坡内部分成若干个影响区域,推导出每个区域的位移函数,可以有效降低理论分析的难度。通过位移矢量时程分析,得出边坡危险区域和潜在的滑动面。采用位移矢量分析得到的结果和实验结果较为吻合。

Abstract:
This study discusses the propagation law of seismic wave propagating in the isotropic rock slope. In view of energy distribution, we can investigate the stability of slope carefully and comprehensively. But the computational cost is very high for analyzing the dynamic response of all the points of the whole slope based on the seismic wave theory. In order to reduce the difficulty, the rock slope can be divided into different region according to the propagation law of seismic wave; the displacement functions only for different regions are needed to be evaluated. The dangerous region and the potential sliding surface could be determined by the time-history analysis of displacement vector. The displacement response obtained by time-history analysis is consistent with the results observed from the experiment.

文章引用: 陈臻林 , 黄楠棋 , 勾婷颖 , 伍鸿兴 , 唐鸥玲 , 罗来超 (2013) 地震波作用下边坡稳定性的区域化时程分析。 土木工程, 2, 176-180. doi: 10.12677/HJCE.2013.23031

参考文献

[1] J. Ingles, J. Darrozes and J. C. Soula. Effects of the vertical component of ground shaking on earthquake-induced landslide displacements using generalized Newmark analysis. Engineering Geology, 2006, 86: 134-147.

[2] T. Nesemann. Positive nonlinear difference equations: Some results and applications. Nonlinear Analysis, 2001, 47(7): 4707- 4717.

[3] 吴伟, 姚令侃, 陈强. 坡形和加筋措施对地震响应影响的振动台模型实验研究[J]. 重庆交通大学学报: 自然科学版, 2008, 27(5): 689-694.

[4] 徐光兴, 姚令侃, 高召宁, 李朝红. 边坡动力特性与动力响应的大型振动台模型试验研究[J]. 岩石力学与工程学报, 2008, 27(3): 624-632.

[5] S. Ashford, N. Sitar. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bulletin of the Seismological Society of America, 1997, 87(3): 692-700.

[6] S. Ashford, N. Sitar, J. Lysmer and N. Deng. Topog-raphic effects on the seismic response of steep slopes. Bulletin of the Seismological Society of America, 1997, 87(3): 701-709.

[7] G. D. Bouckovalas, A. G. Papadimitriou. Numerical evaluation of slope topography effects on seismic ground motion. Soil Dynamics and Earthquake Engineering, 2005, 25: 547-558.

[8] J. C. Li, G. W. Ma and J. Zhao. Stress wave interaction with a nonlinear and slippery rock joint. International Journal of Rock Mechanics & Mining Sciences, 2011, 44: 85-92.

[9] Y. X. Li, Z. M. Zhu, B. X. Li, J. H. Deng and H. P. Xie. Study on the transmission and reflection of stress waves across joints. International Journal of Rock Mechanics & Mining Sciences, 2011, 1: 1-8.

[10] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 1985.

[11] 邹威, 许强, 刘汉香. 强震作用下岩质斜坡动力响应特性的大型振动台试验方案设计[J]. 地质灾害与环境保护, 2011, 22(1): 87-91.

分享
Top