甘蓝型油菜未成熟种子多酚的研究
Analysis of Phenolic Compounds in Developing Seeds of Brassica napus

作者: 邵彦林 , 高亚楠 , 孔月琴 , 蒋金金 , 王幼平 :扬州大学生物科学与技术学院,扬州;

关键词: 甘蓝型油菜多酚物质萃取效率HPLC-ESI/MS2原花色素类黄酮 Brassica napus L. Phenolics Extraction Efficiency HPLC-ESI/MS2 Proanthocyanidins Flavonoids

摘要:

甘蓝型油菜种子含有大量的多酚物质,主要是羟基苯丙烯酸衍生物、原花色素和类黄酮衍生物,不同研究者对多酚物质的研究方法各异。本文使用化学分析和HPLC-ESI/MS2分析,首先研究了不同溶液在不同温度下对油菜籽多酚物质萃取效率的影响,发现80%的丙酮水溶液在室温条件下对油菜籽多酚的萃取效率最高。进一步对未成熟种子种皮和胚多酚物质进行研究,发现总酚和总类黄酮含量种皮明显高于胚。多酚物质中,种皮类黄酮和原花色素的含量要高于胚,但羟基苯丙烯酸衍生物的含量要低于胚。芥子碱是油菜籽中含量最丰富的多酚物质,主要存在于胚当中。而表儿茶素是含量最丰富的类黄酮物质,主要存在于种皮当中。

Abstract: Phenolics are abundant in seeds of Brassica napus, mainly including hydroxycinnamic acid derivatives, proanthocyanidins (PAs) and flavonoid derivatives. Different research methods have been reported by researchers. In this research, both chemical analysis and HPLC-ESI/MS2 analysis were conducted to compare the different compositions of soluble phenolics in embryo and seed coat of B. napus. The extraction parameters were also optimized by comparing single factors like extraction temperature and solvent. And the results showed that room temperature and solvent of 80% acetone yielded the maximum phenolics. Further comparison showed that total phenolics and flavonoids in seed coat were much higher than in embryo of immature seeds. Among the identified phenolics, flavonoid and proanthocyanidin in seed coat were higher than in embryo, whereas derivatives of hydroxyl-cinnamic acid were lower accumulated in seed coat than embryo. Sinapine, as the most abundant phenolics, was mainly existed in embryo. And epicatechin was abundant in seed coat, which was well known as the most abundant flavonoids.

文章引用: 邵彦林 , 高亚楠 , 孔月琴 , 蒋金金 , 王幼平 (2013) 甘蓝型油菜未成熟种子多酚的研究。 植物学研究, 2, 79-86. doi: 10.12677/BR.2013.23014

参考文献

[1] R. Scarth, J. Tang. Modification of Brassica oil using conven- tional and transgenic approaches. Crop Science, 2006, 46(3): 1225-1236.

[2] F. Shahidi, M. Naczk. An overview of the phenolics of canola and rapeseed: Chemical, sensory and nutritional implications. Journal of American Oil Chemists Society, 1992, 69: 917-924.

[3] 何兰, 姜志宏. 天然产物资源化学[M]. 北京: 科学出版社, 2008: 340-372.

[4] U. Thiyam, P. Claudia, U. Jan and B. Alfred. De-oiled rapeseed and a protein isolate: Characterization of sinapic acid derivates by HPLC-DAD and LC-MS. European Food Research and Technology, 2009, 229(5): 825-831.

[5] Q. Liu, L. Wu, H. M. Pu, C. Y. Li and Q, H. Hu. Profile and distribution of soluble and insoluble phenolics in Chinese rape- seed (Brassica napus L.). Food Chemistry, 2012, 135(2): 616- 622.

[6] B. Auger, N. Marnet, V. Gautier, A. Maia-Grondard, F. Leprince, M. Renard, S. Guyot, N. Nesi and R. Jean-Marc. A detailed sur- vey of seed coat flavonoids in developing seeds of Brassica na- pus L. Journal of Agriculture and Food Chemistry, 2010, 58(10): 6246-6256.

[7] J. J. Jiang, Y. L. Shao, A. M. Li, C. L. Lu, Y. T. Zhang and Y. P. Wang. Flavonoid profiling and gene expression in developing seeds of yellow- and black-seeded Brassica napus. Journal of Integrative Plant Biology, 2013, 55(6): 537-551.

[8] N. P. Gullett, A. R. Ruhul, S. Bayraktar, J. M. Pezzuto, D. M. Shin, F. R. Khuri, B. B. Aggarwal, Y. J. Surh and O. Kucuk. Cancer prevention with natural compounds. Seminar in Oncol- ogy, 2010, 37(3): 258-281.

[9] F. Ferreres, C. Sousa, P. Valentao, R. M. Seabra, J. A. Pereira and P. B. Andrade. Tronchuda cabbage (Brassica oleracea L. var. costata DC) seeds: Phytochemical characterization and antioxi- dant potential. Food Chemistry, 2007, 101(2): 549-558.

[10] C. A. Williams, R. J. Grayer. Anthocyanins and other flavonoids. Natural Product Reports, 2004, 21(4): 539-573.

[11] L. C. Olsson, M. Veit, G. Weissenbock and J. F. Bornman. Dif- ferential flavonoid re-sponse to enhanced UV-B radiation in Brassica napus. Phytochemistry, 1998, 49(4): 1021-1028.

[12] F. Sosulski. Organoleptic and nutritional effects of phenolics. Jour- nal of American Oil Chemists Society, 1979, 56(8): 711-715.

[13] A. Frolov, A. Henning and C. Bottcher. An UPLC-MS/MS me- thod for simultaneous identification and quantitation of cell wall phenolics in Brassica napus seeds. Journal of Agriculture and Food Chemistry, 2013, 61(6): 1219-1227.

[14] M. Jasinski, P. Kachlicki, P. Rodziewicz, M. Figlerowicz and M. Stobiecki. Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal patho- gen Phoma medicaginis. Plant Physiology and Biochemistry, 2009, 47(9): 847-853.

[15] K. Nie, Z. H. Tang, X. Wu, X. N. Xu, Y. Z. Liang, H. Li and L. Q. Rao. Optimization of total flavonoids extraction from mul- berry leaf using an ethanol-based solvent system. Journal of Me- dicinal Plants Research, 2012, 6(12): 2373-2380.

[16] M. D. Sarina, C. S. Florian. Investigation on the phenolic consti- tuents in Hamamelis virginiana leaves by HPLC-DAD and LC- MS/MS. Analytical and Bioanalytical Chemistry, 2011, 401(2): 677-688.

[17] M. Naczk, R. Amarowicz, D. Pink and F. Shahidi. Insoluble tannins of canola/rapeseed. Journal of Agriculture and Food Che- mistry, 2000, 48(5): 1758-1762.

[18] C. Eynck, B. Koopmann P. P. Karlovsky and A. V. Tiedemann. Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopa- thology, 2009, 99(7): 802-811.

[19] M. Faudale, F. Viladomat, J. Bastida, F. Poli and C. Codina. Antioxidant activity and phenolic composition of wild, edible, and medicinal fennel from different mediterranean countries. Jour- nal of Agriculture and Food Chemistry, 2008, 56(6): 1912-1920.

分享
Top