海洋生源硅溶解速率及其控制机理概述
Review on the Dissolution of Biogenic Silica and Its Controls in the Ocean

作者: 王丹娜 :厦门大学环境与生态学院,厦门;

关键词: 生源硅硅循环气候变化溶解速率Biogenic Silica Si Biogeochemical Cycle Climate Change Dissolution Rate

摘要:
硅(Si)元素在地壳中的丰度位居第二(约占27%),也是海洋生态系统中重要的生源要素。硅作为海洋浮游植物优势组分——硅藻生长所必需的营养元素,能够形成生源硅参与到硅循环中,并且是生物泵的重要载体,因此它的生物地球化学循环与全球碳循环及全球气候变化密切相关。生源硅的溶解作为海洋硅循环的重要组成部分,贯穿于从生源硅生成、沉降到埋藏的所有环节,是连接海表到海底的桥梁。本文概述了近年来海洋中有关生源硅溶解的研究进展,从动力学方程方面探讨了影响生源硅溶解速率的因素,并介绍了四种测定生源硅溶解速率的实验方法,指出目前研究中存在的问题,展望研究重点,以期为今后海洋硅循环的研究提供背景资料。

Abstract:
Silicon, which represents 27% of the lithosphere, plays an important role in marine ecosystem, and it makes the linkage with the global carbon cycle and climate change, through the biological pump of CO2. Biogenic silica (BSi) is produced mainly by diatoms, which are the predominant algae in many areas of the world ocean. The dissolution be-havior of BSi can be a bridge for understanding of the ocean Si cycle, because of its close relation with the production, export and burial of BSi. In this paper, the present research progress of the marine BSi dissolution behavior are re-viewed, and the major controlling factors effected the dissolution rate of BSi are discussed from the point of dynamical equations, in addition, four methods determining the dissolution rate of BSi are introduced, including the method prob-lems at present, so as to provide background information for researching of ocean Si cycle in the future.

文章引用: 王丹娜 (2013) 海洋生源硅溶解速率及其控制机理概述。 气候变化研究快报, 2, 93-98. doi: 10.12677/CCRL.2013.23015

参考文献

[1] D. M. Nelson, P. Tréguer, M. A. Brzezinski, et al. Production and dis-solution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimenta-tion. Global Biogeochemical Cycles, 1995, 9(3): 359-372.

[2] D. Archer. Effect of deep-sea sedimentary calcite preservation on atmos-pheric CO2 concentration. Nature, 1994, 367: 260-263.

[3] M. A. Brzezinski, T. A. Villareal and F. Lipschultz. Silica production and the contribution of diatoms to new and primary production in the central North Pacific. Marine Ecology Progress Series, 1998, 167: 89-104.

[4] J. L. Sarmiento, N. Gruber, M. A. Brzezinski, et al. High-latitude controls of thermocline nutrients and low latitude bio-logical productivity. Nature, 2004, 427(6969): 56-60.

[5] D. J. De-Master. The supply and accumulation of silica in the marine environ-ment. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732.

[6] P. Tréguer, D. M. Nelson, A. J. Van Bennekom, et al. The silica balance in the world ocean: A reestimate. Science, 1995, 268 (5209): 375-379.

[7] W. S. Broecker, G. M. Henderson. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography, 1998, 13(4): 352-364.

[8] R. Francois, M. A. Altabet, E. F. Yu, et al. Con-tribution of Southern Ocean surface water stratification to low atmos-pheric CO2 concentrations during the last glacial period. Nature, 1997, 389(6654): 929-936.

[9] O. Ragueneau, P. Tréguer, A. Leynaert, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 2000, 26(4): 317-365.

[10] T. H. Peng, E. Maier-Reimer and W. S. Broecker. Distribution of 32Si in the World Ocean: model compared to observation. Global Biogeochemical Cycles, 1993, 7(2): 463-474.

[11] P. Van Cappellen, L. Qiu. Biogenic silica dissolution in sediments of the Southern Ocean: I. Solubility. Deep Sea Research, 1997, 44(5): 1109-1128.

[12] P. Michalopoulos, R. C. Aller and R. J. Reeder. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology, 2000, 28(12): 1095-1098.

[13] P. Michalopoulos, R. C. Aller. Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay forma-tion, and storage. Geochimica et Cosmochimica Acta, 2004, 68(5): 1061- 1085.

[14] D. J. DeMaster. The accumulation and cycling of biogenic silica in the Southern Ocean: Revisiting the marine silica budge. Deep Sea Research PartⅡ: Topical Study in Oceanography, 2002, 49 (16): 3155-3167.

[15] D. C. Hurd, S. Birdwhistell. On producing a more general model for biogenic silica dissolution. Ameri-can Journal of Science, 1983, 283: 1-28.

[16] D. C. Hurd. Factors af-fecting solution rate of biogenic opal in seawater. Earth and Planetary Science Letters, 1972, 15(4): 411- 417.

[17] A. Kamatani. Dissolution rates of silica from diatoms decomposing at various temperatures. Marine Biology, 1982, 68(1): 91-96.

[18] D. M. Nelson, L. I. Gordon. Production and pelagic dissolution of biogenic silica in the Southern Ocean. Geochemistry Cosmochemistry Acta, 1982, 46(4): 491-501.

[19] P. Tréguer, A. Kamatani, S. Gueneley, et al. Kinetics of dissolution of Antarctic diatom frustules and the biogeochemical cycle of silicon in the Southern Ocean. Polar Biology, 1989, 9(6): 397- 403.

[20] D. M. Nelson, J. A. Ahern and L. J. Herlihy. Cycling of biogenic silica within the upper water column of the Ross Sea. Marine Chemistry, 1991, 35(1-4): 461-476.

[21] M. A. Brzezinski, D. M. Nelson. Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep Sea Research, 1989, 36(7): 1009-1030.

[22] J. C. Lewin. The dissolution of silica from diatom walls. Geochemistry Cosmochemistry Acta, 1961, 21(3-4): 182-198.

[23] A. J. Van Ben-nekom, A. G. J. Buma and R. F. Nolting. Dissolved aluminum in the Weddell Scotia Confluence and the effect of Al on the dissolution kinetics of biogenic silica. Marine Chemistry, 1991, 35(1-4): 423-434.

[24] K. O. Buesseler. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles, 1998, 12(2): 297-310.

[25] D. S. Lawson, D. C. Hurd and H. S. Pank-ratz. Silica dissolution rates of decomposing phytoplankton assem-blages at various temperatures. American Journal of Science, 1978, 278: 1373- 1393.

[26] A. Kamatani, J. P. Riley. Rate of dissolution of diatom silica walls in seawater. Marine Biology, 1979, 55(1): 29-35.

[27] K. D. Bidle, F. Azam. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 1999, 397: 508-512.

[28] M. A. Brzezinski, D. R. Phillips. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol-ogy Oceanography, 1997, 42(5): 856-865.

[29] D. M. Jacobson, D. M. Anderson. Thecate heterotrophic dino- flagellates: Feeding behavior and mechanism. Journal of Phycology, 1986, 22: 249-258.

[30] C. B. Miller, D. M. Nelson, C. Weiss, et al. Morphogenesis of opal teeth in calanoid copepods. Marine Biology, 1990, 106(1): 91-101.

[31] V. W. Truesdale, C. J. Smith. The auromatic determination of silicate dis-solved in natural freshwater by means of procedures in involving use of either α- or β-molydosilicic acid. Analyst, 1976, 101: 19-31.

[32] A. C. Lasaga, J. M. Soler, J. Ganor, et al. Chemical weathering rate laws and global geochemical cycles. Geochemistry Cosmochemistry Acta, 1994, 58(10): 2361-2386.

[33] E. Koning, et al. Settling dissolution and burial of biogenic silica in the sediments off Somalia (Northwest-ern of Indian Ocean). Deep Sea Research II, 1997, 44(6-7): 1341-1360.

分享
Top