Analytic Equation of State and Thermodynamic Properties of Rb6C60

作者: 杨 维 :成都大学电子信息工程学院,成都;

关键词: 状态方程热力学性质Rb6C60解析平均场方法 Equation of State Thermodynamic Properties Rb6C60 AMFP


解析平均场(AMFP)方法用于多指数型固体,双指数型固体作为一种特殊情况包含于其中。推导了状态方程和热物理量的解析表达式,并把所得到的公式用于固体Rb6C60的热力学性质研究。通过拟合固态Rb6C60在室温296 K压强至22 GPa的压缩实验数据得到了一套势参数。在宽广温度和压强范围内对Rb6C60的各种物理量,包括热膨胀、体积模量、等容热容量、亥姆霍兹自由能进行了计算和分析。我们的理论结果与其它的计算结果和有用的实验数据非常一致。AMFP方法能很好的考虑Rb6C60 在高温时的非谐性效应。

Abstract: The analytic mean field potential (AMFP) approach is applied to the multiple-exponential potential solid, and the double-exponential (DE) potential is included in as a special case. The analytic equation of state and thermodynamic properties are derived and applied to Rb6C60 solid. One set of potential parameters are determined by fitting the experimental compression data of Rb6C60 up to 22 GPa at ambient temperature (296 K). Various physical quantities including the thermal expansion, bulk modulus, isochoric heat capacity, Helmholtz free energy are calculated and analyzed. The theoretical results are consistent with the available experimental data and those calculated by others. The AMFP method is a useful approach to consider the anharmonic effect of Rb6C60 at high temperature.

文章引用: 杨 维 (2013) Rb6C60的解析状态方程及热力学性质。 应用物理, 3, 97-101. doi: 10.12677/APP.2013.35019


[1] M. G. Yao, B. Sundqvist and T. Wagberg. Reversible pressure- driven nanoscale phase separation in Rb4C60. Physical Review B, 2009, 79(8): 081403-081406.

[2] W. H. Fietz, H. A. Ludwig, F. W. Hornung, et al. The compressi- bility of Rb3C60 derived by X-ray experiments under high pres- sure. Physica C, 1994, 234(1-2): 45-48.

[3] R. Kerkoud, P. Auban-Senzier, D. Jérome, et al. Insulator-metal transition in Rb4C60 under pressure from 13C-NMR. Journal of Physics and Chemistry of Solids, 1996, 57(2): 143-152.

[4] R. Poloni, M. V. Fernandez-Serra, S. Le Floch, et al. Pressure- induced deformation of the C60 fullerene in Rb6C60 and Cs6C60. Physical Review B, 2008, 77(3): Article ID: 035429.

[5] A. A. Sabouri-Dodaran, M. Marangolo, C. Bellin, et al. Equations of state of RbxC60 (x=3, 4, and 6). Physical Review B, 2004, 70(17): Article ID: 174114.

[6] E. Wasserman, L. Stixrude. Thermal properties of iron at high pressures and temperatures. Physical Review B, 1996, 53(13): 8296-8309.

[7] Y. Wang, D. Chen and X. Zhang. Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa. Physical Review Letter, 2000, 84(15): 3220-3223.

[8] N. K. Bhatt, P. R. Vyas, A. R. Jani, et al. Thermodynamic prop- erties of the alkali metals at high temperatures and high pres- sures using mean-field potential model. Journal of Physics and Chemistry of Solids, 2005, 66(5): 797-808.

[9] J. X. Sun, L. C. Cai, Q. Wu, et al. Equivalence of the analytic mean-field potential approach with free-volume theory and veri- fication of its applicability based on the Vinet equation of state. Physical Review B, 2005, 71(2): Article ID: 024107.

[10] W. Yang, J. X. Sun and F. Yu. Thermodynamic properties of cubic boron nitride based on an analytic mean field approach. European Physical Journal B, 2009, 71(2): 211-217.

[11] A. I. Karasevskii, V. V. Lubashenko. Bi-nary distribution func- tions of atoms of simple crystals. Physical Re-view B, 2002, 66 (5): 054302-054311.

[12] W. Yang, J. X. Sun and R. G. Tian. Analytic equation of state and thermodynamic properties of diamond based on an analytic mean field approach. Diamond & Related Materials, 2009, 18(4): 632- 636.

[13] 金家骏. 分子热力学[M]. 北京: 科学出版社, 1990: 255-264.

[14] N. X. Chen, Z. D. Chen and Y. C. Wei. Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier tran- sform. Physical Review E, 1997, 55(1): R5-R8.

[15] L. A. Girifalco. Molecular properties of C60 in the gas and solid phases. Journal of Physical Chemistry, 1992, 96(2): 858-861.

[16] K. Ranjan, K. Dharamvir and V. K. Jindal. Bulk proper-ties of alkali doped C60 solides. Indian Journal of Pure and Applied Physics, 2005, 43(9): 654-659.